Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168938, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38029982

ABSTRACT

Terrigenous carbon in aquatic systems is increasingly recognised as an important part of the global carbon cycle. Despite this, the fate and distribution of terrigenous dissolved organic carbon (tDOC) in coastal and oceanic systems is poorly understood. We have implemented a theoretical framework for the degradation of tDOC across the land to ocean continuum in a 3D hydrodynamical-biogeochemical model on the North West European Shelf. A key feature of this model is that both photochemical and bacterial tDOC degradation rates are age dependant constituting an advance in our ability to describe carbon cycling in the marine environment. Over the time period 1986-2015, 182±17 Gmol yr-1 of riverine tDOC is input to the shelf. Results indicate that bacterial degradation is by far the most important process in removing tDOC on the shelf, contributing to 73±6 % (132±11 Gmol yr-1) of the total removal flux, while 21±3 % (39±6 Gmol yr-1) of riverine tDOC was advected away from the shelf and photochemical degradation removing 5±0.5 % of the riverine flux. Explicitly including tDOC in the model decreased the air-sea carbon dioxide (CO2) flux by 112±8 Gmol yr-1 (4±0.4 %), an amount approximately equivalent to the CO2 released by the UK chemical industry in 2020. The reduction is equivalent to 62 % of the riverine tDOC input to the shelf while approximately 17 % of riverine input is incorporated into the foodweb. This work can improve the assumptions of the fate of tDOC by Earth System Models and demonstrates that the inclusion of tDOC in models can impact ecosystem dynamics and change predicted global carbon budgets for the ocean.

2.
Environ Sci Technol ; 50(16): 8722-30, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27409146

ABSTRACT

Direct discharges of treated and untreated wastewater are important sources of nutrients to coastal marine ecosystems and contribute to their eutrophication. Here, we estimate the spatially distributed annual inputs of phosphorus (P) and nitrogen (N) associated with direct domestic wastewater discharges from coastal cities to the Mediterranean Sea (MS). According to our best estimates, in 2003 these inputs amounted to 0.9 × 10(9) mol P yr(-1) and 15 × 10(9) mol N yr(-1), that is, values on the same order of magnitude as riverine inputs of P and N to the MS. By 2050, in the absence of any mitigation, population growth plus higher per capita protein intake and increased connectivity to the sewer system are projected to increase P inputs to the MS via direct wastewater discharges by 254, 163, and 32% for South, East, and North Mediterranean countries, respectively. Complete conversion to tertiary wastewater treatment would reduce the 2050 inputs to below their 2003 levels, but at an estimated additional cost of over €2 billion yr(-1). Management of coastal eutrophication may be best achieved by targeting tertiary treatment upgrades to the most affected near-shore areas, while simultaneously implementing legislation limiting P in detergents and increasing wastewater reuse across the entire basin.


Subject(s)
Nitrogen , Phosphorus , Environmental Monitoring , Eutrophication , Mediterranean Sea , Rivers , Wastewater
3.
Proc Natl Acad Sci U S A ; 112(51): 15603-8, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644553

ABSTRACT

More than 70,000 large dams have been built worldwide. With growing water stress and demand for energy, this number will continue to increase in the foreseeable future. Damming greatly modifies the ecological functioning of river systems. In particular, dam reservoirs sequester nutrient elements and, hence, reduce downstream transfer of nutrients to floodplains, lakes, wetlands, and coastal marine environments. Here, we quantify the global impact of dams on the riverine fluxes and speciation of the limiting nutrient phosphorus (P), using a mechanistic modeling approach that accounts for the in-reservoir biogeochemical transformations of P. According to the model calculations, the mass of total P (TP) trapped in reservoirs nearly doubled between 1970 and 2000, reaching 42 Gmol y(-1), or 12% of the global river TP load in 2000. Because of the current surge in dam building, we project that by 2030, about 17% of the global river TP load will be sequestered in reservoir sediments. The largest projected increases in TP and reactive P (RP) retention by damming will take place in Asia and South America, especially in the Yangtze, Mekong, and Amazon drainage basins. Despite the large P retention capacity of reservoirs, the export of RP from watersheds will continue to grow unless additional measures are taken to curb anthropogenic P emissions.


Subject(s)
Phosphorus/analysis , Rivers/chemistry , Eutrophication , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...