Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 35(8): 1383-1392, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35830964

ABSTRACT

To reduce the number of animals and studies needed to fulfill the information requirements as required by Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) (EC no. 1907/2006), a read-across approach was used to support approximately 30 higher olefins. This study aimed to assess the absorption potential of higher olefins through the gut wall as the experimentally determined bioavailability which would strengthen the read-across hypothesis and justification, reducing the need for toxicity studies on all of the higher olefins. The absorption potential of a series of higher olefins (carbon range from 6 to 28, with five configurations of the double bond) was determined in the in vitro everted rat small intestinal sac model and subsequently ranked. In addition, in silico approaches were applied to predict the reactivity, lipophilicity, and permeability of higher olefins. In the in vitro model, everted sacs were incubated in "fed-state simulated small intestinal fluid" saturated with individual higher olefins. The sac contents were then collected, extracted, and analyzed for olefin content using gas chromatography with a flame ionization detector. The C6 to C10 molecules were readily absorbed into the intestinal sacs. Marked inter-compound differences were observed, with the amount of absorption generally decreasing with the increase in carbon number. Higher olefins with ≥C14 carbons were either not absorbed or very poorly absorbed. In the reactivity simulation study, the reactivity is well described by the position of the double bond rather than the number of carbon atoms. In the lipophilicity and permeability analysis, both parameter descriptors depend mainly on the number of carbon atoms and less on the position of the double bond. In conclusion, these new approach methodologies provide supporting information on any trends or breakpoints in intestinal uptake and a hazard matrix based on carbon number and position of the double bond. This matrix will further assist in the selection of substances for inclusion in the mammalian toxicity testing programme.


Subject(s)
Alkenes , Intestinal Absorption , Animals , Carbon/metabolism , Intestine, Small , Mammals , Permeability , Rats
2.
Toxicology ; 210(2-3): 147-57, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15840428

ABSTRACT

p-Phenylenediamine (PPD) is a widely used ingredient in permanent hair dyes; however, little has been published on its metabolism, especially with respect to hepatic cytochrome P450 (CYP)-mediated oxidation. This is regarded as a key step in the activation of carcinogenic arylamines that ultimately leads to the development of bladder cancer. Most epidemiology studies show no significant association between personal use of hair dyes and bladder cancer, but one recent study reported an increased risk of bladder cancer in women who were frequent users of permanent hair dyes. The aim of the present study was to use intact human hepatocytes, human liver microsomes, and heterologously expressed human CYPs to determine whether PPD is metabolised by hepatic CYPs to form an N-hydroxylamine. p-Phenylenediamine was N-acetylated by human hepatocytes to form N-acetylated metabolites, but there was no evidence for the formation of mono-oxygenated metabolites or for enzyme-mediated covalent binding of 14C-PPD to microsomal protein. In contrast, 2-aminofluorene underwent CYP-mediated metabolism to > or = 4 different hydroxylated metabolites. The lack of evidence for hepatic CYP-mediated metabolism of PPD is inconsistent with the hypothesis that this compound plays a causal role in the development of bladder cancer via a mode of action involving hepatic metabolism to an N-hydroxyarylamine.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/enzymology , Microsomes, Liver/enzymology , Phenylenediamines/metabolism , Acetylation , Cells, Cultured , Chromatography, High Pressure Liquid , Fluorenes/metabolism , Humans , Male , Mass Spectrometry , Protein Binding , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...