Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 49(1): e12876, 2023 02.
Article in English | MEDLINE | ID: mdl-36575942

ABSTRACT

AIMS: Myotonic dystrophy type I (DM1) is one of the most frequent muscular dystrophies in adults. Although DM1 has long been considered mainly a muscle disorder, growing evidence suggests the involvement of peripheral nerves in the pathogenicity of DM1 raising the question of whether motoneurons (MNs) actively contribute to neuromuscular defects in DM1. METHODS: By using micropatterned 96-well plates as a coculture platform, we generated a functional neuromuscular model combining DM1 and muscleblind protein (MBNL) knock-out human-induced pluripotent stem cells-derived MNs and human healthy skeletal muscle cells. RESULTS: This approach led to the identification of presynaptic defects which affect the formation or stability of the neuromuscular junction at an early developmental stage. These neuropathological defects could be reproduced by the loss of RNA-binding MBNL proteins, whose loss of function in vivo is associated with muscular defects associated with DM1. These experiments indicate that the functional defects associated with MNs can be directly attributed to MBNL family proteins. Comparative transcriptomic analyses also revealed specific neuronal-related processes regulated by these proteins that are commonly misregulated in DM1. CONCLUSIONS: Beyond the application to DM1, our approach to generating a robust and reliable human neuromuscular system should facilitate disease modelling studies and drug screening assays.


Subject(s)
Induced Pluripotent Stem Cells , Myotonic Dystrophy , Adult , Humans , Myotonic Dystrophy/pathology , RNA-Binding Proteins/metabolism , Neuromuscular Junction/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/pathology
2.
iScience ; 11: 258-271, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30639849

ABSTRACT

There is currently no treatment for myotonic dystrophy type 1 (DM1), the most frequent myopathy of genetic origin. This progressive neuromuscular disease is caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors, resulting in alternative splicing misregulation. By combining human mutated pluripotent stem cells and phenotypic drug screening, we revealed that cardiac glycosides act as modulators for both upstream nuclear aggregations of DMPK mRNAs and several downstream alternative mRNA splicing defects. However, these occurred at different drug concentration ranges. Similar biological effects were recorded in a DM1 mouse model. At the mechanistic level, we demonstrated that this effect was calcium dependent and was synergic with inhibition of the ERK pathway. These results further underscore the value of stem-cell-based assays for drug discovery in monogenic diseases.

3.
J Dermatol Sci ; 2018 May 05.
Article in English | MEDLINE | ID: mdl-29764717

ABSTRACT

BACKGROUND: Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. OBJECTIVE: The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. METHODS: The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. RESULTS: We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. CONCLUSION: Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders.

4.
SLAS Discov ; 23(8): 790-806, 2018 09.
Article in English | MEDLINE | ID: mdl-29498891

ABSTRACT

Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.


Subject(s)
Biological Assay/methods , Drug Discovery/methods , High-Throughput Screening Assays , Muscle, Skeletal/drug effects , Biomarkers , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Excitation Contraction Coupling/drug effects , Humans , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscular Diseases/drug therapy , Muscular Diseases/etiology , Muscular Diseases/metabolism , Regeneration/drug effects
5.
Stem Cells ; 31(9): 1816-28, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712629

ABSTRACT

Decreased expression of neuronal genes such as brain-derived neurotrophic factor (BDNF) is associated with several neurological disorders. One molecular mechanism associated with Huntington disease (HD) is a discrete increase in the nuclear activity of the transcriptional repressor REST/NRSF binding to repressor element-1 (RE1) sequences. High-throughput screening of a library of 6,984 compounds with luciferase-assay measuring REST activity in neural derivatives of human embryonic stem cells led to identify two benzoimidazole-5-carboxamide derivatives that inhibited REST silencing in a RE1-dependent manner. The most potent compound, X5050, targeted REST degradation, but neither REST expression, RNA splicing nor binding to RE1 sequence. Differential transcriptomic analysis revealed the upregulation of neuronal genes targeted by REST in wild-type neural cells treated with X5050. This activity was confirmed in neural cells produced from human induced pluripotent stem cells derived from a HD patient. Acute intraventricular delivery of X5050 increased the expressions of BDNF and several other REST-regulated genes in the prefrontal cortex of mice with quinolinate-induced striatal lesions. This study demonstrates that the use of pluripotent stem cell derivatives can represent a crucial step toward the identification of pharmacological compounds with therapeutic potential in neurological affections involving decreased expression of neuronal genes associated to increased REST activity, such as Huntington disease.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation/drug effects , High-Throughput Screening Assays/methods , Neural Stem Cells/metabolism , Neurons/metabolism , Repressor Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Cell Line , Disease Models, Animal , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Genes, Reporter , Humans , Huntington Disease/pathology , Luciferases/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurons/drug effects , Repressor Proteins/metabolism , Transcriptome/drug effects , Transcriptome/genetics
6.
J Cell Sci ; 126(Pt 8): 1763-72, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23444380

ABSTRACT

Patients with myotonic dystrophy type 1 exhibit a diversity of symptoms that affect many different organs. Among these are cognitive dysfunctions, the origin of which has remained elusive, partly because of the difficulty in accessing neural cells. Here, we have taken advantage of pluripotent stem cell lines derived from embryos identified during a pre-implantation genetic diagnosis for mutant-gene carriers, to produce early neuronal cells. Functional characterization of these cells revealed reduced proliferative capacity and increased autophagy linked to mTOR signaling pathway alterations. Interestingly, loss of function of MBNL1, an RNA-binding protein whose function is defective in DM1 patients, resulted in alteration of mTOR signaling, whereas gain-of-function experiments rescued the phenotype. Collectively, these results provide a mechanism by which DM1 mutation might affect a major signaling pathway and highlight the pertinence of using pluripotent stem cells to study neuronal defects.


Subject(s)
Embryonic Stem Cells/cytology , Myotonic Dystrophy/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cell Line , Cell Proliferation , Cellular Senescence/genetics , Cellular Senescence/physiology , Electrophoresis, Polyacrylamide Gel , Humans , Immunohistochemistry , In Situ Hybridization , Myotonic Dystrophy/genetics , Real-Time Polymerase Chain Reaction , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...