Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biokhimiia ; 61(9): 1600-9, 1996 Sep.
Article in Russian | MEDLINE | ID: mdl-8998284

ABSTRACT

alpha-Latrotoxin (LTX) is a presynaptic neurotoxin from black widow spider (Latrodectus mactans tredecimguttatus) venom; it causes massive Ca(2+)-independent neurotransmitter release. The effect of LTX on phosphorylation of synaptosomal proteins was studied including synapsin I, synaptotagmin, and dynamin. Experiments were performed in Ca(2+)-supplemented medium containing 1 mM CaCl2 or nominally Ca(2+)-free medium (without added Ca2+ and EGTA) using intact synaptosomes isolated from rat brain and prelabeled with 32P(i). The data indicate the exposure of synaptosomes to 10 nM LTX for 10 sec stimulates 32P(i) incorporation into synapsin I up to 143% versus control in Ca(2+)-supplemented medium and up to 130% in Ca(2+)-free medium. LTX (20 nM) significantly stimulated synapsin I phosphorylation (up to 173% versus control) only in Ca(2+)-free medium. Under these conditions, dephosphorylation of dynamin was not observed. Exposure of synaptosomes to LTX in Ca(2+)-supplemented medium for 10 sec did not affect 32P(i) incorporation into synaptotagmin but increase in incubation time up to 30 sec results in dephosphorylation of synaptotagmin down to 70% versus control level. In Ca(2+)-free medium, LTX stimulates the 32Pi incorporation into synaptotagmin (up to 140% versus control) and the effect was not time-dependent. Thus, LTX-stimulated neurosecretion in Ca(2+)-supplemented and Ca(2+)-free medium requires phosphorylation of synapsin I. Phosphorylation-dephosphorylation cycle of synaptotagmin can be important for regulation of recyclization of synaptic vesicles.


Subject(s)
Brain/drug effects , Nerve Tissue Proteins/metabolism , Spider Venoms/pharmacology , Synaptosomes/drug effects , Animals , Brain/metabolism , Male , Phosphorus Radioisotopes , Phosphorylation/drug effects , Rats , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...