Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng Commun ; 17: e00224, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37415783

ABSTRACT

Fatty acids are produced by eukaryotes like baker's yeast Saccharomyces cerevisiae mainly using a large multifunctional type I fatty acid synthase (FASI) where seven catalytic steps and a carrier domain are shared between one or two protein subunits. While this system may offer efficiency in catalysis, only a narrow range of fatty acids are produced. Prokaryotes, chloroplasts and mitochondria rely instead on a FAS type II (FASII) where each catalytic step is carried out by a monofunctional enzyme encoded by a separate gene. FASII is more flexible and capable of producing a wider range of fatty acid structures, such as the direct production of unsaturated fatty acids. An efficient FASII in the preferred industrial organism S. cerevisiae could provide a platform for developing sustainable production of specialized fatty acids. We functionally replaced either yeast FASI genes (FAS1 or FAS2) with a FASII consisting of nine genes from Escherichia coli (acpP, acpS and fab -A, -B, -D, -F, -G, -H, -Z) as well as three from Arabidopsis thaliana (MOD1, FATA1 and FATB). The genes were expressed from an autonomously replicating multicopy vector assembled using the Yeast Pathway Kit for in-vivo assembly in yeast. Two rounds of adaptation led to a strain with a maximum growth rate (µmax) of 0.19 h-1 without exogenous fatty acids, twice the growth rate previously reported for a comparable strain. Additional copies of the MOD1 or fabH genes resulted in cultures with higher final cell densities and three times higher lipid content compared to the control.

2.
Biotechnol Adv ; 59: 107989, 2022 10.
Article in English | MEDLINE | ID: mdl-35623491

ABSTRACT

Capsaicinoids are bioactive alkaloids produced by the chili pepper fruit and are known to be the most potent agonists of the human pain receptor TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1). They are currently produced by extraction from chili pepper fruit or by chemical synthesis. Transfer of the biosynthetic route to a microbial host could enable more efficient capsaicinoid production by fermentation and may also enable the use of synthetic biology to create a diversity of new compounds with potentially improved properties. This review summarises the current state of the art on the biosynthesis of capsaicinoid precursors in baker's yeast, Saccharomyces cerevisiae, and discusses bioengineering strategies for achieving total synthesis from sugar.


Subject(s)
Capsicum , Saccharomyces cerevisiae , Capsaicin/analysis , Capsaicin/chemistry , Capsaicin/pharmacology , Capsicum/chemistry , Fruit/chemistry , Humans , Saccharomyces cerevisiae/genetics
3.
Microorganisms ; 8(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213005

ABSTRACT

Four yeast isolates from the species-Apiotrichum brassicae, Candida tropicalis, Metschnikowia pulcherrima, and Pichia kudriavzevii-previously selected by their oleaginous character and growth flexibility in different carbon sources, were tested for their capacity to convert volatile fatty acids into lipids, in the form of single cell oils. Growth, lipid yields, volatile fatty acids consumption, and long-chain fatty acid profiles were evaluated in media supplemented with seven different volatile fatty acids (acetic, butyric, propionic, isobutyric, valeric, isovaleric, and caproic), and also in a dark fermentation effluent filtrate. Yeasts A. brassicae and P. kudriavzevii attained lipid productivities of more than 40% (w/w), mainly composed of oleic (>40%), palmitic (20%), and stearic (20%) acids, both in synthetic media and in the waste-derived effluent filtrate. These isolates may be potential candidates for single cell oil production in larger scale applications by using alternative carbon sources, combining economic and environmental benefits.

4.
BMC Microbiol ; 20(1): 60, 2020 03 14.
Article in English | MEDLINE | ID: mdl-32169040

ABSTRACT

BACKGROUND: Over the last years oleaginous yeasts have been studied for several energetic, oleochemical, medical and pharmaceutical purposes. However, only a small number of yeasts are known and have been deeply exploited. The search for new isolates with high oleaginous capacity becomes imperative, as well as the use of alternative and ecological carbon sources for yeast growth. RESULTS: In the present study a high-throughput screening comprising 366 distinct yeast isolates was performed by applying an optimised protocol based on two approaches: (I) yeast cultivation on solid medium using acetic acid as carbon source, (II) neutral lipid estimation by fluorimetry using the lipophilic dye Nile red. CONCLUSIONS: Results showed that, with the proposed methodology, the oleaginous potential of yeasts with broad taxonomic diversity and variety of growth characteristics was discriminated. Furthermore, this work clearly demonstrated the association of the oleaginous yeast character to the strain level, contrarily to the species-level linkage, as usually stated.


Subject(s)
Acetic Acid/metabolism , Fluorescent Dyes/chemistry , Oxazines/chemistry , Yeasts/isolation & purification , Culture Media , High-Throughput Screening Assays , Lipid Metabolism , Soil Microbiology , Staining and Labeling , Yeasts/classification , Yeasts/growth & development , Yeasts/metabolism
6.
J Hazard Mater ; 309: 37-52, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26874310

ABSTRACT

This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.


Subject(s)
Hydrocarbons, Brominated/metabolism , Hydrocarbons, Chlorinated/metabolism , Aerobiosis , Biodegradation, Environmental , Kinetics , Models, Biological
7.
Water Res ; 90: 354-368, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26766159

ABSTRACT

In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 < bed height<27 cm, 4.5 < flow rate<18.2 BV/h, 0.8 < particle equivalent diameter<2.0 mm), the highest useful capacity (7.1 mg Zn/g algae) was obtained for D/dp = 31, L/D = 11, 9.1 BV/h, τ = 6.4 min, corresponding to a service capacity of 124 BV (endpoint of 2 mg Zn/L). Elution was faster and near to 100% effective using 10 BV of HCl (1 M, 3.0%, 363 g HCl/L of resin), for flow rates higher than 4.5 BV/h. Calcium chloride solution (0.1 M) was selected as the best regenerant, allowing the reuse of the natural resin for more than 3 saturation/elution/regeneration cycles. The best operation conditions were scaled-up and tested in a pre-pilot plant. The scale-up design of the cation exchange process was proposed for the treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3).


Subject(s)
Ion Exchange , Laminaria , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/instrumentation , Water Purification/methods , Zinc/analysis , Adsorption , Biomass , Cations , Chromatography, Ion Exchange/methods , Equipment Design , Hydrogen-Ion Concentration , Ions , Wastewater , Water , Water Microbiology , Water Pollutants, Chemical/isolation & purification , Zinc/chemistry , Zinc/isolation & purification
8.
Bioresour Technol ; 124: 276-82, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22989655

ABSTRACT

Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate.


Subject(s)
Biodegradation, Environmental , Methane/metabolism , Anaerobiosis , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...