Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 110: 104801, 2021 05.
Article in English | MEDLINE | ID: mdl-33756235

ABSTRACT

The discovery and development of isoform-selective histone deacetylase (HDAC) inhibitor is a challenging task because of the sequence homology among HDAC enzymes. In the present work, novel tetrahydro benzo[b]thiophene-3-carbonitrile based benzamides were designed, synthesized, and evaluated as HDAC inhibitors. Pharmacophore modeling was our main design strategy, and two novel series of tetrahydro benzo[b]thiophene-3-carbonitrile derivatives with piperidine linker (series 1) and piperazine linker (series 2) were identified as HDAC inhibitors. Among all the synthesised compounds, 9h with 4-(aminomethyl) piperidine linker and 14n with piperazine linker demonstrated good activity against human HDAC1 and HDAC6, respectively. Both the compounds also exhibited good antiproliferative activity against several human cancer cell lines. Both these compounds (9h and 14n) also induced cell cycle arrest and apoptosis in U937 and MDA-MB-231 cancer cells. Overall, for the first time, this research discovered potent isoform-selective HDAC inhibitors using cyclic linker instead of the aliphatic chain and aromatic ring system, which were reported in known HDAC inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Histone Deacetylase Inhibitors/pharmacology , Thiophenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases , Humans , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
2.
Epigenetics ; 16(8): 838-850, 2021 08.
Article in English | MEDLINE | ID: mdl-33016232

ABSTRACT

Acetylation of histone and non-histone proteins is a post-translational modification mostly associated with activation of gene transcription. The first histone acetyltransferase (HAT) identified as modifying newly synthesized histone H4 in yeast was a type B HAT named HAT1. Although it was the first HAT to be discovered, HAT1 remains one of the most poorly studied enzymes in its class. In addition to its well-established role in the cytoplasm, recent findings have revealed new and intriguing aspects of the function of HAT1 in the nucleus. Several studies have described its involvement in regulating different pathways associated with a wide range of diseases, including cancer. This review focuses on our current understanding of HAT1, highlighting its importance in regulating chromatin replication and gene expression. This previously unknown role for HAT1 opens up novel scenarios in which further studies will be required to better understand its function.


Subject(s)
DNA Methylation , Histone Acetyltransferases , Acetylation , Histone Acetyltransferases/genetics , Histones/metabolism
3.
Int J Mol Sci ; 20(22)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31726691

ABSTRACT

Sirtuins, a family of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylases, are promising targets for anticancer treatment. Recently, we characterized a novel pan-sirtuin (SIRT) inhibitor, MC2494, displaying antiproliferative effects and able to induce death pathways in several human cancer cell lines and decrease tumor growth in vivo. Based on the chemical scaffold of MC2494, and by applying a structure-activity relationship approach, we developed a small library of derivative compounds and extensively analyzed their enzymatic action at cellular level as well as their ability to induce cell death. We also investigated the effect of MC2494 on regulation of cell cycle progression in different cancer cell lines. Our investigations indicated that chemical substitutions applied to MC2494 scaffold did not confer higher efficacy in terms of biological activity and SIRT1 inhibition, but carbethoxy-containing derivatives showed higher SIRT2 specificity. The carbethoxy derivative of MC2494 and its 2-methyl analog displayed the strongest enzymatic activity. Applied chemical modifications improved the enzymatic selectivity of these SIRT inhibitors. Additionally, the observed activity of MC2494 via cell cycle and apoptotic regulation and inhibition of cell migration supports the potential role of SIRTs as targets in tumorigenesis and makes SIRT-targeting molecules good candidates for novel pharmacological approaches in personalized medicine.


Subject(s)
Antineoplastic Agents , Histone Deacetylase Inhibitors , Neoplasm Proteins , Neoplasms , Sirtuin 1 , Sirtuin 2 , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , HL-60 Cells , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Humans , K562 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Molybdoferredoxin , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/metabolism , U937 Cells
4.
J Biol Chem ; 289(50): 34900-10, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25324542

ABSTRACT

The most common glycosylation disorder is caused by mutations in the gene encoding phosphomannomutase2, producing a disease still without a cure. Phosphomannomutase2, a homodimer in which each chain is composed of two domains, requires a bisphosphate sugar (either mannose or glucose) as activator, opening a possible drug design path for therapeutic purposes. The crystal structure of human phosphomannomutase2, however, lacks bound substrate and a key active site loop. To speed up drug discovery, we present here the first structural model of a bisphosphate substrate bound to human phosphomannomutase2. Taking advantage of recent developments in all-atom simulation techniques in combination with limited and site-directed proteolysis, we demonstrated that α-glucose 1,6-bisphosphate can adopt two low energy orientations as required for catalysis. Upon ligand binding, the two domains come close, making the protein more compact, in analogy to the enzyme in the crystals from Leishmania mexicana. Moreover, proteolysis was also carried out on two common mutants, R141H and F119L. It was an unexpected finding that the mutant most frequently found in patients, R141H, although inactive, does bind α-glucose 1,6-bisphosphate and changes conformation.


Subject(s)
Metabolism, Inborn Errors/enzymology , Phosphotransferases (Phosphomutases)/chemistry , Phosphotransferases (Phosphomutases)/metabolism , Amino Acid Sequence , Animals , Glucose-6-Phosphate/analogs & derivatives , Glucose-6-Phosphate/metabolism , Glycosylation , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Mutation , Peptide Hydrolases/metabolism , Phosphotransferases (Phosphomutases)/genetics , Protein Binding , Protein Conformation , Protein Unfolding , Proteolysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...