Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068892

ABSTRACT

The development of novel radiocontrast agents, mainly used for the visualization of blood vessels, is still an emerging task due to the variety of side effects of conventional X-ray contrast media. Recently, we have shown that octahedral chalcogenide rhenium clusters with phosphine ligands-Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S, Se)-can be considered as promising X-ray contrast agents if their relatively high toxicity related to the high charge of the complexes can be overcome. To address this issue, we propose one of the most widely used methods for tuning the properties of proteins and peptides-PEGylation (PEG is polyethylene glycol). The reaction between the clusters and PEG-400 was carried out in acidic aqueous media and resulted in the binding of up to five carboxylate groups with PEG. The study of cytotoxicity against Hep-2 cells and acute toxicity in mice showed a twofold reduction in toxicity after PEGylation, demonstrating the success of the strategy chosen. Finally, the compound obtained has been used for the visualization of blood vessels of laboratory rats by angiography and computed tomography.


Subject(s)
Peptides , Proteins , Rats , Mice , Animals , Peptides/toxicity , Contrast Media/toxicity , Contrast Media/chemistry , Ligands , Polyethylene Glycols/chemistry , Angiography
2.
Molecules ; 28(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38138569

ABSTRACT

Among well-studied and actively developing compounds are polyoxometalates (POMs), which show application in many fields. Extending this class of compounds, we introduce a new subclass of polyoxometal clusters (POMCs) [Mo12O28(µ-L)8]4- (L = pyrazolate (pz) or triazolate (1,2,3-trz or 1,2,4-trz)), structurally similar to POM, but containing binuclear Mo2O4 clusters linked by bridging oxo- and organic ligands. The complexes obtained by ampoule synthesis from the binuclear cluster [Mo2O4(C2O4)2(H2O)2]2- in a melt of an organic ligand are soluble and stable in aqueous solutions. In addition to the detailed characterization in solid state and in aqueous solution, the biological properties of the compounds on normal and cancer cells were investigated, and antiviral activity against influenza A virus (subtype H5N1) was demonstrated.


Subject(s)
Influenza A Virus, H5N1 Subtype , Water , Models, Molecular , Molybdenum/pharmacology , Triazoles/pharmacology , Pyrazoles/pharmacology , Antiviral Agents/pharmacology
3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37373156

ABSTRACT

Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the relevance of oxidized dextran polysaccharide, obtained via a simple reaction with H2O2, towards the stabilization of photoactive octahedral molybdenum and tungsten iodide cluster complexes [M6I8}(DMSO)6](NO3)4 in aqueous and culture media. The cluster-containing materials were obtained by co-precipitation of the starting reagents in DMSO solution. According to the data obtained, the amount and ratio of functional carbonyl and carboxylic groups as well as the molecular weight of oxidized dextran strongly affect the extent of stabilization, i.e., high loading of aldehyde groups and high molecular weight increase the stability, while acidic groups have some negative impact on the stability. The most stable material based on the tungsten cluster complex exhibited low dark and moderate photoinduced cytotoxicity, which together with high cellular uptake makes these polymers promising for the fields of bioimaging and PDT.


Subject(s)
Molybdenum , Tungsten , Molybdenum/chemistry , Tungsten/chemistry , Dextrans , Iodides , Dimethyl Sulfoxide , Hydrogen Peroxide
4.
Inorg Chem ; 61(36): 14462-14469, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36041168

ABSTRACT

γ-Cyclodextrin (γ-CD) interacts in aqueous solution with octahedral halide clusters Na2[{M6X8}Cl6] (M = Mo, W; X = Br, I) to form robust inclusion supramolecular complexes [{M6X8}Cl6@2γ-CD]2-. Single-crystal X-ray diffraction analyses revealed two conformational organizations within the adduct depending on the nature of the inner halide X within the {M6X8} core. Using 35Cl NMR and UV-vis as complementary techniques, the kinetics of the hydrolysis process were shown to increase with the following order: {W6I8} < {W6Br8} ≈ {Mo6I8} < {Mo6Br8}. The complexation with γ-CD drastically enhances the hydrolytic stability of luminescent [{M6X8}Cl6]2- cluster-based units, which was quantitatively proved by the same techniques. The resulting host-guest complexation provides a protective shell against contact with water and offers promising horizons for octahedral clusters in biology as revealed by the low dark cytotoxicity and cellular uptake.


Subject(s)
gamma-Cyclodextrins , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Conformation , Water/chemistry , gamma-Cyclodextrins/chemistry
5.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955875

ABSTRACT

Despite the great potential of octahedral tungsten cluster complexes in fields of biomedical applications such as X-ray computed tomography or angiography, there is only one example of a water-soluble W6Q8-cluster that has been reported in the literature. Herein we present the synthesis and a detailed characterization including X-ray structural analysis, NMR, IR, UV-Vis spectroscopies, HR-MS spectrometry, and the electrochemical behavior of two new cluster complexes of the general formula W6Q8L6 with phosphine ligands containing a hydrophilic carboxylic group, which makes the complexes soluble in an aqueous medium. The hydrolytic stability of the clusters' aqueous solutions allows us to investigate for the first time the influence of W6-clusters on cell viability. The results obtained clearly demonstrate their very low cytotoxicity, comparable to the least-toxic clusters presented in the literature.


Subject(s)
Tungsten , Water , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Tungsten/chemistry , Water/chemistry
6.
J Biol Inorg Chem ; 27(1): 111-119, 2022 02.
Article in English | MEDLINE | ID: mdl-34782931

ABSTRACT

Biological applications of octahedral molybdenum cluster complexes are complicated by their hydrolytic instability, since hydrolysis leads to irreversible changes in the structure and properties of these compounds. On the other hand, if such changes are thoroughly investigated and understood, the hydrolysis process can become an important tool for regulating specific biological effects of the clusters. In this work, we demonstrate how the luminescence and biological properties (cellular uptake, cytotoxicity in the dark and photodynamic effect) of highly unstable cluster complex [{Mo6I8}(DMSO)6](NO3)4 change along with the degree of hydrolysis. Particularly, cluster solution preliminarily aged in water demonstrated lower dark and higher photoinduced cytotoxicity and higher cellular uptake in comparison with fresh solution.


Subject(s)
Dimethyl Sulfoxide , Molybdenum , Dimethyl Sulfoxide/pharmacology , Hydrolysis , Ligands , Luminescence , Molybdenum/chemistry , Molybdenum/pharmacology
7.
Biomater Sci ; 9(8): 2893-2902, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33464243

ABSTRACT

X-ray-induced photodynamic therapy (X-PDT) has recently evolved into a suitable modality to fight cancer. This technique, which exploits radiosensitizers producing reactive oxygen species, allows for a reduction of the radiation dose needed to eradicate cancer in the frame of the radiotherapy treatment of deep tumors. The use of transition metal complexes able to directly produce singlet oxygen, O2(1Δg), upon X-ray irradiation constitutes a promising route towards the optimization of the radiosensitizer's architecture. In our endeavour to conceive pertinent agents for X-PDT, we designed an octahedral molybdenum cluster complex (Mo6) with iodine inner ligands, and carboxylated apical ligands bearing ethylene oxide organic functions. The sodium salt of this complex is highly soluble in aqueous media and displays red luminescence which is efficiently quenched by oxygen to produce O2(1Δg) in a high quantum yield. Furthermore, due to its high radiodensity, the complex exhibits radioluminescence in aqueous media, with the same spectral features as for photoluminescence, indicating the production of O2(1Δg) upon X-ray irradiation. The uptake of the complex by Hep-2 and MRC-5 cells is negligible during the first hours of incubation, then considerably increases in connection with the hydrolysis of the apical ligands. The complex exhibits low toxicity in vitro and induces a radiotoxic effect, noticeable against cancerous Hep-2 cells but negligible against normal MRC-5 cells, at X-ray doses that do not affect cell viability otherwise. The first evaluation of in vivo toxicity of an Mo6 complex on a mouse model evidences a moderate and delayed toxic effect on kidneys, with an intravenous LD50 value of 390 ± 30 mg kg-1, possibly connected with hydrolysis-induced aggregation of the complex. Overall, this complex displays attractive features as a singlet oxygen radiosensitizer for X-PDT, highlighting the potential of transition metal cluster complexes towards this modality.


Subject(s)
Photochemotherapy , Animals , Mice , Molybdenum , Photosensitizing Agents , Singlet Oxygen , Water , X-Rays
8.
Chemistry ; 26(33): 7479-7485, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32181923

ABSTRACT

Specific molecular recognition of γ-cyclodextrin (γ-CD) by the cationic hexanuclear niobium [Nb6 Cl12 (H2 O)6 ]2+ cluster complex in aqueous solutions results in a 1:1 supramolecular assembly {[Nb6 Cl12 (H2 O)6 ]@γ-CD}2+ . NMR spectroscopy, isothermal titration calorimetry (ITC), and ESI-MS were used to study the interaction between the inorganic cluster and the organic macrocycle. Such molecular association affects the biological activity of [Nb6 Cl12 (H2 O)6 ]2+ , decreasing its cytotoxicity despite enhanced cellular uptake. The 1:1 stoichiometry is maintained in solution over a large window of the reagents' ratio, but crystallization by slow evaporation produces a 1:2 host-guest complex [Nb6 Cl12 (H2 O)6 @(γ-CD)2 ]Cl2 ⋅20 H2 O featuring the cluster encapsulated between two molecules of γ-CD. The 1:2 complex was characterized by XRD, elemental analysis, IR spectroscopy, and thermogravimetric analysis (TGA). Quantum chemical calculations were performed to model host-guest interaction.


Subject(s)
Niobium/chemistry , gamma-Cyclodextrins/chemistry , Biological Phenomena , Calorimetry , Magnetic Resonance Spectroscopy , Water/chemistry
9.
Mater Sci Eng C Mater Biol Appl ; 96: 530-538, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606563

ABSTRACT

Unlike silica nanoparticles, the potential of silica mesoparticles (SMPs) (i.e. particles of submicron size) for biological applications in particular the in vitro (let alone in vivo) cellular delivery of biological cargo has so far not been sufficiently studied. Here we examine the potential of luminescent (namely, octahedral molybdenum cluster doped) SMPs synthesised by a simple one-pot reaction for the labelling of cells and for protein transduction into larynx carcinoma (Hep-2) cells using GFP as a model protein. Our data demonstrates that the SMPs internalise into the cells within half an hour. This results in cells that detectably luminesce via conventional methods. In addition, the particles are non-toxic both in darkness and upon photo-irradiation. The SMPs were modified to allow their functionalisation by a protein, which then delivered the protein (GFP) efficiently into the cells. Thus, the luminescent SMPs offer a cheap and trackable alternative to existing materials for cellular internalisation of proteins, such as the HIV TAT protein and commercial protein delivery agents (e.g. Pierce™).


Subject(s)
Green Fluorescent Proteins , Luminescence , Nanoparticles/chemistry , Silicon Dioxide , Cell Line, Tumor , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/pharmacology , Humans , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology
10.
Mater Sci Eng C Mater Biol Appl ; 95: 166-173, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30573238

ABSTRACT

The present work reports ultra-small polyelectrolyte-coated water insoluble Tb(III) complex species with bright Tb(III)-centered luminescence resulted from efficient ligand-to-metal energy transfer as efficient labels for Hep-2 cells. The flow cytometry data revealed the enhanced cellular uptake of negatively charged nanoparticles coated by the polystyrenesulfonate (PSS)-monolayer versus the positively charged nanoparticles. The latter are obtained by layer-by-layer deposition of polyethyleneimine (PEI) onto PSS-coated ones. Confocal and TEM images of Hep-2 cells exposed by the colloids confirm favorable cell internalization of the PSS- compared to PEI-PSS-coated colloids illustrating unusual charge-effect. Dynamic light scattering data indicate significant effect of the biological background exemplified by serum bovine albumin and phosphatidylcholine-based bilayers on the exterior charge and aggregation behavior of the colloids. The obtained results reveal the PSS-coated nanoparticles based on water insoluble Tb(III) complex as promising cell labels.


Subject(s)
Nanoparticles/chemistry , Polyelectrolytes/chemistry , Cell Line, Tumor , Flow Cytometry , Hep G2 Cells , Humans , Luminescence , Microscopy, Confocal , Microscopy, Electron, Transmission
11.
Chemistry ; 24(68): 17915-17920, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30222219

ABSTRACT

Octahedral molybdenum and tungsten clusters have potential biological applications in photodynamic therapy and bioimaging. However, poor solubility and hydrolysis stability of these compounds hinder their application. The first water-soluble photoluminescent octahedral tungsten cluster [{W6 I8 }(DMSO)6 ](NO3 )4 was synthesised and demonstrated to be at least one order of magnitude more stable towards hydrolysis than its molybdenum analogue. Biological studies of the compound on larynx carcinoma cells suggest that it has a significant photoinduced toxicity, while the dark toxicity increases with the increase of the degree of hydrolysis. The increase of the dark toxicity is associated with the in situ generation of nanoparticles that clog up the cisternae of rough endoplasmic reticulum.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Molybdenum/chemistry , Molybdenum/pharmacology , Tungsten/chemistry , Tungsten/pharmacology , Cell Line, Tumor , Drug Stability , Hep G2 Cells , Humans , Hydrolysis , Light , Models, Molecular , Neoplasms/drug therapy , Neoplasms/pathology , Photochemical Processes , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
12.
J Inorg Biochem ; 182: 170-176, 2018 05.
Article in English | MEDLINE | ID: mdl-29486416

ABSTRACT

The present work introduces composite luminescent nanoparticles (Ag0-Tb3+-SNs), where ultra-small nanosilver (4 ±â€¯2 nm) is deposited onto amino-modified silica nanoparticles (35±6 nm) doped by green luminescent Tb(III) complexes. Ag0-Tb3+-SNs are able to image cancer (Hep-2) cells in confocal microscopy measurements due to efficient cell internalization, which is confirmed by TEM images of the Hep-2 cells exposed by Ag0-Tb3+-SNs. Comparative analysis of the cytotoxicity of normal fibroblasts (DK-4) and cancer cells (Hep-2) incubated with various concentrations of Ag0-Tb3+-SNs revealed the concentration range where the toxic effect on the cancer cells is significant, while it is insignificant towards the nonmalignant fibroblasts cells. The obtained results reveal Ag0-Tb3+-SNs as good cellular contrast agent able to induce the cancer cells death, which makes them promising theranostic in cancer diagnostics and therapy.


Subject(s)
Antineoplastic Agents/chemistry , Contrast Media/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Humans , Lanthanoid Series Elements/metabolism , Microscopy, Confocal , Silver/chemistry
13.
Inorg Chem ; 56(21): 13491-13499, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-28990789

ABSTRACT

Octahedral rhenium cluster complexes have recently emerged as relevant building blocks for the design of singlet oxygen photosensitizing materials toward biological applications such as blue-light photodynamic therapy. However, their singlet oxygen generation ability as well as biological properties have been studied only superficially. Herein we investigate in detail the singlet oxygen photogeneration, dark and photoinduced cytotoxicity, cellular uptake kinetics, cellular localization and in vitro photoinduced oxidative stress, and photodynamic cytotoxicity of the series of octahedral rhenium cluster complexes [{Re6Q8}(CN)6]4-, where Q = S, Se, Te. Our results demonstrate that the selenium-containing complex possesses optimal properties in terms of absorption and singlet oxygen productivity. These features coupled with the cellular internalization and low dark toxicity lead to the first photoinduced cytotoxic effect observed for a molecular [{M6Q8}L6] complex, making it a promising object for further study in terms of blue-light PDT.


Subject(s)
Contrast Media/pharmacology , Coordination Complexes/pharmacology , Photosensitizing Agents/pharmacology , Rhenium/chemistry , Singlet Oxygen/chemistry , Cell Line, Tumor , Contrast Media/chemical synthesis , Contrast Media/radiation effects , Contrast Media/toxicity , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Coordination Complexes/toxicity , Heterochromatin/drug effects , Humans , Ligands , Light , Luminescence , Mitochondria/drug effects , Oxidative Stress/drug effects , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Photosensitizing Agents/toxicity
14.
Mater Sci Eng C Mater Biol Appl ; 76: 551-558, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482563

ABSTRACT

The work introduces Tb(III)-centered luminescence of amino-modified silica nanoparticles doped with Tb(III) complexes for cellular imaging. For these purposes water-in-oil procedure was optimized for synthesis of 20 and 35nm luminescent nanoparticles with amino-groups embedded on the surface. The obtained results indicate an impact of the nanoparticle size in decoration, aggregation behavior and luminescent properties of the nanoparticles in protein-based buffer solutions. Formation of a protein-based corona on the nanoparticles surface was revealed through the effect of the nanoparticles on helical superstructure of BSA. This effect is evident from CD spectral data, while no any size impact on the adsorption of BSA onto aminomodified silica surface was observed. Cellular uptake of the nanoparticles studied by confocal and TEM microscopy methods indicates greater cellular uptake for the smaller nanoparticles. Cytotoxicity of the nanoparticles was found to agree well with their cellular uptake behavior, which in turn was found to be greater for the smaller nanoparticles.


Subject(s)
Metal Nanoparticles , Luminescence , Silicon Dioxide , Water
15.
Toxicol Res (Camb) ; 6(4): 554-560, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-30090524

ABSTRACT

The octahedral rhenium cluster compound Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] has recently emerged as a very promising X-ray contrast agent for biomedical applications. However, the synthesis of this compound is rather challenging due to the difficulty in controlling the hydrolysis of the initial P(C2H4CN)3 ligand during the reaction process. Therefore, in this report we compare the in vitro and in vivo toxicity of Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] with those of related compounds featuring the fully hydrolysed form of the phosphine ligand, namely Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S or Se). Our results demonstrate that the cytotoxicity and acute in vivo toxicity of the complex Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] solutions were considerably lower than those of compounds with the fully hydrolysed ligand P(C2H4COOH)3. Such behavior can be explained by the higher osmolality of Na2H14[{Re6Q8}(P(C2H4COO)3)6] versus Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6].

16.
Nanomedicine ; 13(2): 755-763, 2017 02.
Article in English | MEDLINE | ID: mdl-27816527

ABSTRACT

Octahedral rhenium cluster complexes may have considerable potential as therapeutic and diagnostic drugs due to their luminescent and X-ray contrast properties, as well as their ability to generate singlet oxygen upon photoirradiation. However, their potential biological effects and toxicity in vitro and in vivo are rather far from being understood. Thus, the aim of our research was to study cytotoxicity, intracellular localization and cellular uptake/elimination kinetics in vitro, biodistribution and acute intravenous toxicity in vivo of a complex Na4[{Re6Te8}(CN)6] as the promising compound for biomedical application. The results have demonstrated that the complex penetrates through cell membranes with the maximum accumulation in cells in 24h of incubation and have low toxic effects in vitro and in vivo. The median lethal dose (LD50) of intravenously administrated Na4[{Re6Te8}(CN)6] is equal to 1082±83mg/kg. These findings will be useful for future development of cluster-based agents for different biomedical applications.


Subject(s)
Contrast Media , Rhenium , Humans , Luminescence , Tissue Distribution , Tumor Cells, Cultured , X-Rays
17.
J Inorg Biochem ; 166: 100-107, 2017 01.
Article in English | MEDLINE | ID: mdl-27842246

ABSTRACT

Inclusion compounds of photoluminescent hexamolybdenum cluster complexes in the chromium terephthalate metal-organic framework, MIL-101 (MIL, Matérial Institut Lavoisier) were successfully synthesized in two different ways and characterized by means of powder X-Ray diffraction, chemical analysis and nitrogen sorption. Some important functional properties of hexamolybdenum cluster complexes for biological and medical applications, in particular singlet oxygen generation ability, luminescence properties, cellular uptake behavior and cytotoxicity were studied. It was revealed that the inclusion compounds possessed significant singlet oxygen generation activity. The materials obtained showed a low cytotoxicity, thus allowing them to be used in living cells. Confocal microscopy of human larynx carcinoma (Hep-2) cells incubated with the inclusion compounds showed that MIL-101 performed as a nanocarrier adhering to the external cell membrane surface and releasing the cluster complexes which that penetrated into the cells. Moreover, photoinduced generation of reactive oxygen species (ROS) in Hep-2 cells incubated with inclusion compounds was demonstrated. The cluster supported on MIL-101 was shown to possess in vivo phototoxicity.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Drug Carriers , Laryngeal Neoplasms/drug therapy , Molybdenum , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Humans , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Metal-Organic Frameworks , Molybdenum/chemistry , Molybdenum/pharmacology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...