Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomed Pharmacother ; 169: 115869, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37952358

ABSTRACT

Betablockers (BBs) are prescribed for ischaemia in patients with acute coronary syndrome (ACS). In Spain, bisoprolol and carvedilol are the most prescribed BBs, but patients often had to discontinue them due to adverse effects. Single nucleotide polymorphisms (SNPs) in ADRB1, ADRB2 and CYP2D6 genes have strong evidence of pharmacogenetic association with BBs in heart failure or hypertension, but the evidence in ACS is limited. Therefore, our study focuses on investigating how these genes influence the response to BBs in ACS patients. We analysed the association between SNPs in ADRB1 Gly389Arg (rs1801253) and Ser49Gly (rs1801252), ADRB2 Gly16Arg (rs1042713) and Glu27Gln (rs1042714), and CYP2D* 6 (*2- rs1080985, *4- rs3892097, *10 - rs1065852) and the occurrence of bradycardia/hypotension events during one year of follow-up. We performed an observational study and included 285 ACS-PCI-stent patients. A first analysis including patients treated with bisoprolol and a second analysis including patients treated with other BBs were performed. We found that the presence of the G allele (Glu) of the ADRB2 gene (rs1042714; Glu27Gln) conferred a protective effect against hypotension-induced by BBs; OR (CI 95%) = 0,14 (0,03-0,60), p < 0.01. The ADRB2 (rs1042713; Gly16Arg) GG genotype could also prevent hypotensive events; OR (CI 95%) = 0.49 (0.28-0.88), p = 0015. SNPs in ADRB1 and CYP2D6 * 2, CYP2D6 * 4 weren´t associated with primary events. The effect of CYP2D6 * 10 does not seem to be relevant for the response to BBs. According to our findings, SNPs in ADRB2 (rs1042713, rs1042714) could potentially affect the response and tolerance to BBs in ACS-patients. Further studies are necessary to clarify the impact of ADRB2 polymorphisms.


Subject(s)
Acute Coronary Syndrome , Hypotension , Percutaneous Coronary Intervention , Humans , Cytochrome P-450 CYP2D6/genetics , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/genetics , Bisoprolol/therapeutic use , Adrenergic beta-Antagonists/therapeutic use , Genotype , Polymorphism, Single Nucleotide/genetics , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-2/genetics
2.
Pharmaceutics ; 14(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893809

ABSTRACT

A severe form of myopia defined as pathologic/high myopia is the main cause of visual impairment and one of the most frequent causes of blindness worldwide. It is characterized by at least 6 diopters or axial length (AL) of eyeball > 26 mm and choroidal neovascularization (CNV) in 5 to 10% of cases. Ranibizumab is a humanized recombinant monoclonal antibody fragment targeted against human vascular endothelial growth factor A (VEGF-A) used in the treatment of CNV. It acts by preventing VEGF-A from interacting with its receptors (VEGFR-1 and -2) encoded by the FLT1 and KDR genes. Several studies found that the KDR and FLT1 genotypes may represent predictive determinants of efficacy in ranibizumab-treated neovascular age-related macular degeneration (nAMD) patients. We performed a retrospective study to evaluate the association of single nucleotide polymorphisms (SNPs) in VEGFR coding genes with the response rate to ranibizumab in patients with high myopia and CNV. In the association study of genotypes in FLT1 with the response to ranibizumab, we found a significant association between two FLT1 variants (rs9582036, rs7993418) with ranibizumab efficacy at the 12-month follow-up. About the KDR gene, we found that two KDR variants (rs2305948, rs2071559) are associated with best-corrected visual acuity (BCVA) improvement and KDR (rs2239702) is associated with lower rates of BCVA worsening considering a 12-month follow-up period.

3.
Pharmaceutics ; 13(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34834388

ABSTRACT

High myopia is an ophthalmic pathology that affects half of the young adults in the United States and Europe and it is predicted that a third of the world's population could be nearsighted at the end of this decade. It is characterized by at least 6 diopters or axial length > 26 mm and, choroidal neovascularization (CNV) in 5 to 11% of cases. Ranibizumab is a recombinant humanized monoclonal antibody fragment. It is an anti-vascular endothelial growth factor (anti-VEGF) drug used in the treatment of CNV. Many genetic polymorphisms have been associated with interindividual differences in the response to ranibizumab, but these associations were not yet assessed among patients with high myopia and CNV. We performed a retrospective study assessing the association of genetic polymorphisms with response to ranibizumab in patients with CNV secondary to high myopia (mCNV). We included genetic polymorphisms previously associated with the response to drugs used in CNV patients (bevacizumab, ranibizumab, aflibercept, and photodynamic therapy (PDT)). We also included genetic variants in the VEGFA gene. Based on our results, ARMS2 (rs10490924) and CFH (rs1061170) are associated with response to ranibizumab in high myopia patients; and, included VEGFA genetic polymorphisms are not associated with ranibizumab response in our population but might be related to a higher risk of CNV.

4.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502358

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant vascular dysplasia characterized by epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVM) in the visceral organs. The diagnosis of HHT is based on clinical Curaçao criteria, which show limited sensitivity in children and young patients. Here, we carried out a liquid biopsy by which we isolated total RNA from plasma exosome samples. A cohort of 15 HHT type 1 patients, 15 HHT type 2 patients, and 10 healthy relatives were analyzed. Upon gene expression data processing and normalization, a statistical analysis was performed to explore similarities in microRNA expression patterns among samples and detect differentially expressed microRNAs between HHT samples and the control group. We found a disease-associated molecular fingerprint of 35 miRNAs over-represented in HHT vs. controls, with eight being specific for HHT1 and 11 for HHT2; we also found 30 under-represented, including nine distinct for HHT1 and nine for HHT2. The analysis of the receiver operating characteristic (ROC) curves showed that eight miRNAs had good (AUC > 75%) or excellent (AUC > 90%) diagnosis value for HHT and even for type HHT1 and HHT2. In addition, we identified the cellular origin of these miRNAs among the cell types involved in the vascular malformations. Interestingly, we found that only some of them were incorporated into exosomes, which suggests a key functional role of these exosomal miRNAs in the pathophysiology of HHT.


Subject(s)
Exosomes/genetics , MicroRNAs/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Antigens, CD/genetics , Arteriovenous Malformations/genetics , Cohort Studies , Endoglin/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Genotype , Humans , Liquid Biopsy , MicroRNAs/blood , Mutation , Phenotype , Telangiectasia, Hereditary Hemorrhagic/metabolism , Transcriptome/genetics
5.
Biomed Pharmacother ; 142: 112069, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34470728

ABSTRACT

ß-blockers are commonly prescribed to treat multiple cardiovascular (CV) diseases, but, frequently, adverse drug reactions and intolerance limit their use in clinical practice. Interindividual variability in response to ß-blockers may be explained by genetic differences. In fact, pharmacogenetic interactions for some of these drugs have been widely studied, such as metoprolol. But studies that explore genetic variants affecting bisoprolol response are inconclusive, limited or confusing because of mixed results with other ß-Blockers, different genetic polymorphisms observed, endpoint studied etc. Because of this, we performed a systematic review in order to find relevant genetic variants affecting bisoprolol response. We have found genetic polymorphism in several genes, but most of the studies focused in ADRB variants. The ADRB1 Arg389Gly (rs1801253) was the most studied genetic polymorphism and it seems to influence the response to bisoprolol, although studies are inconclusive. Even, we performed a meta-analysis about its influence on systolic/diastolic blood pressure in patients treated with bisoprolol, but this did not show statistically significant results. In conclusion, many genetic polymorphisms have been assessed about their influence on patients´ response to bisoprolol and the ADRB1 Arg389Gly (rs1801253) seems the most relevant genetic polymorphism in this regard but results have not been confirmed with a meta-analysis. Our results support the need of further studies about the impact of genetic variants on bisoprolol response, considering different genetic polymorphisms and conducting single and multiple SNPs analysis, including other clinical parameters related to bisoprolol response in a multivariate study.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Bisoprolol/pharmacology , Pharmacogenetics , Blood Pressure/drug effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Humans , Polymorphism, Single Nucleotide , Receptors, Adrenergic, beta-1/genetics , Treatment Outcome
6.
Genes (Basel) ; 11(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-33198211

ABSTRACT

Polypoidal choroidal vasculopathy (PCV) is usually regarded as a subtype of choroidal neovascularization (CNV) that is secondary to age-related macular degeneration (AMD) characterized by choroidal vessel branching, ending in polypoidal lesions. Despite their close association, PCV and neovascular AMD have shown differences, especially regarding patients' treatment response. Currently, antivascular endothelial growth factor (anti-VEGF) drugs, such as ranibizumab, bevacizumab and aflibercept, have demonstrated their efficacy in CNV patients. However, in PCV, anti-VEGF treatments have shown inconclusive results. Many genetic polymorphisms have been associated with a variable response in exudative/wet AMD patients. Thus, the aim of this study is to explore the genetic variants affecting anti-VEGF drug response in PCV patients. In this regard, we performed a systematic review and meta-analysis. We found four variants (CFH I62V, CFH Y402H, ARMS2 A69S, and HTRA1-62A/G) that have been significantly related to response. Among them, the ARMS2 A69S variant is assessed in our meta-analysis. In conclusion, in order to implement anti-VEGF pharmacogenetics in clinical routines, further studies should be performed, distinguishing physio-pathogenic circumstances between PCV and exudative AMD and the combined effect on treatment response of different genetic variants.


Subject(s)
Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Retinal Degeneration/genetics , Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Biomarkers, Pharmacological , Complement Factor H/genetics , Complement Factor H/metabolism , Fluorescein Angiography/methods , Genetic Variation/genetics , Genotype , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Humans , Polymorphism, Single Nucleotide , Proteins/genetics , Proteins/metabolism , Retinal Degeneration/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/therapeutic use , Visual Acuity/drug effects , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...