Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 45(6): 2985-3001, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36125600

ABSTRACT

Santiago, capital city of Chile, presents air pollution problems for decades mainly by particulate matter, which significantly affects population health, despite national authority efforts to improve air quality. Different properties of the particulate matter (PM10, PM2.5 and PM1 fractions, particle surface and number) were measured with an optical spectrometer. The sampling was done during spring 2019 at different sites within the official representative area of Independencia monitoring station (ORMS-IS). The results of this study evidence large variations in PM mass concentration at small-scale areas within the ORMS-IS representative zone, which reports the same value for the total area. Results from PM properties such as PM1, particle number and particle surface distribution show that these properties should be incorporated in regular monitoring in order to improve the understanding of the effects of these factors on human health. The use of urban-climate canopy-layer models in a portion of the sampled area around the monitoring station demonstrates the influence of street geometry, building densities and vegetation covers on wind velocity and direction. These factors, consequently, have an effect on the potential for air pollutants concentrations. The results of this study evidence the existence of hot spots of PM pollution within the area of representativeness of the ORMS-IS. This result is relevant from the point of view of human health and contributes to improve the effectiveness of emission reduction policies.


Subject(s)
Air Pollutants , Air Pollution , Humans , Particulate Matter/analysis , Chile , Environmental Monitoring/methods , Air Pollution/analysis , Air Pollutants/analysis , Particle Size
2.
Environ Pollut ; 183: 143-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23639471

ABSTRACT

Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Trees/physiology , Volatile Organic Compounds/analysis , Chile , Cities , Nitrogen Oxides/analysis , Ozone/analysis , Terpenes/analysis
3.
J Environ Manage ; 88(4): 658-64, 2008 Sep.
Article in English | MEDLINE | ID: mdl-17548144

ABSTRACT

Greenhouse gases (GHG), basically methane (CH(4)), carbon dioxide (CO(2)) and nitrous oxide (N(2)O), occur at atmospheric concentrations of ppbv to ppmv under natural conditions. GHG have long mean lifetimes and are an important factor for the mean temperature of the Earth. However, increasing anthropogenic emissions could produce a scenario of progressive and cumulative effects over time, causing a potential "global climate change". Biological degradation of the organic matter present in wastewater is considered one of the anthropogenic sources of GHG. In this study, GHG emissions for the period 1990-2027 were estimated considering the sanitation process and the official domestic wastewater treatment startup schedule approved for the Metropolitan Region (MR) of Santiago, Chile. The methodology considers selected models proposed by the Intergovernmental Panel on Climate Change (IPCC) and some others published by different authors; these were modified according to national conditions and different sanitation and temporal scenarios. For the end of the modeled period (2027), results show emissions of about 65 Tg CO(2) equiv./year (as global warming potential), which represent around 50% of national emissions. These values could be reduced if certain sanitation management strategies were introduced in the environmental management by the sanitation company in charge of wastewater treatment.


Subject(s)
Gases/analysis , Greenhouse Effect , Sanitary Engineering , Water Pollutants , Carbon Dioxide/analysis , Methane/analysis , Nitrous Oxide/analysis
4.
Environ Geochem Health ; 25(3): 347-63, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12971254

ABSTRACT

The fast changes in chemical and biological properties of many coastal and inland waters in the last decades reflect the pressure of man on the environment. The surface waters of the Antarctic Peninsula, located far from industrial or populated areas, could eventually be used as background lines. Surface water samples were taken from five lagoons of King George Island, Antarctic Peninsula, and from the Kitiesh Lake. Sample pH and electrical conductivity were analysed in situ and in the laboratory, respectively. The dissolved fractions were analysed in 1997 and 1998. Total concentrations only for 1998 were determined in another fraction adjusted to pH 2. Aluminium, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sn, Sb, Ba, Bi, and Pb were quantified in all samples by means of inductively coupled plasma-mass spectrometry (ICP-MS). Total and dissolved elemental concentrations were discussed considering the composition of particulate material suspended in the waters removed by streams or by water runoff, or from atmospheric aerosols. Concentrations of dissolved elements change from one lagoon to another. Total and dissolved elemental concentrations could be related to water movement by windstorms, to chemical mechanisms in water and/or to natural and anthropogenic atmospheric factors.


Subject(s)
Environmental Pollutants/analysis , Metals, Heavy/analysis , Trace Elements/analysis , Aerosols , Antarctic Regions , Environmental Monitoring , Hydrogen-Ion Concentration , Mass Spectrometry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...