Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 13(7): 1099-1108, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35859861

ABSTRACT

We describe the identification and characterization of a series of covalent inhibitors of the C-terminal kinase domain (CTKD) of MSK1. The initial hit was identified via a high-throughput screening and represents a rare example of a covalent inhibitor which acts via an SNAr reaction of a 2,5-dichloropyrimidine with a cysteine residue (Cys440). The covalent mechanism of action was supported by in vitro biochemical experiments and was confirmed by mass spectrometry. Ultimately, the displacement of the 2-chloro moiety was confirmed by crystallization of an inhibitor with the CTKD. We also disclose the crystal structures of three compounds from this series bound to the CTKD of MSK1, in addition to the crystal structures of two unrelated RSK2 covalent inhibitors bound to the CTKD of MSK1.

2.
Biosens Bioelectron ; 85: 371-380, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27203461

ABSTRACT

Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.


Subject(s)
Biosensing Techniques/methods , Cyclin-Dependent Kinase 4/metabolism , Fluorescent Dyes/metabolism , Melanoma/metabolism , Peptides/metabolism , Skin Neoplasms/metabolism , Skin/pathology , Amino Acid Sequence , Animals , Cell Extracts/chemistry , Cell Line, Tumor , Cyclin-Dependent Kinase 4/analysis , Enzyme Assays/methods , Fluorescent Dyes/chemistry , Melanoma/pathology , Mice , Mice, Nude , Models, Molecular , Peptides/chemistry , Skin/metabolism , Skin Neoplasms/pathology , Spectrometry, Fluorescence/methods
3.
Chembiochem ; 17(8): 737-44, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26946188

ABSTRACT

Understanding the intricate steps of protein kinase regulation requires characterization of protein-protein interactions between the catalytic subunit, its regulatory partners and the substrate. Fluorescent probes are useful tools with which to study such interactions and to gain insight into their affinities and specificities. Solvatochromic probes, which display changes in their fluorescence emission in response to changes in the polarity of the medium, are particularly attractive. Here we describe conjugation of a switchable fluorescent dye, TP-2Rho, to peptide and protein derivatives of cyclin-dependent kinase 4 (CDK4) and its application to characterization of the interactions between the catalytic subunit of this kinase, its regulatory partner cyclin D1 and a peptide substrate. We demonstrate the sensitivity of TP-2Rho in relation to of those other dyes used for monitoring peptide-protein and protein-protein interactions. Moreover, we show that TP-Rho-labelled peptides can be introduced into living cells to probe endogenous CDK4/cyclin D.


Subject(s)
Cyclin D/chemistry , Cyclin D/metabolism , Cyclin-Dependent Kinase 4/chemistry , Cyclin-Dependent Kinase 4/metabolism , Fluorescent Dyes/chemistry , Maleimides/chemistry , Thiazolidines/chemistry , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Maleimides/chemical synthesis , Models, Molecular , Molecular Structure , Protein Binding , Thiazolidines/chemical synthesis
4.
Cancers (Basel) ; 7(1): 179-237, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25625291

ABSTRACT

Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.

5.
Eur J Med Chem ; 88: 74-88, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25314935

ABSTRACT

Cyclin-dependent kinases play central roles in regulation of cell cycle progression, transcriptional regulation and other major biological processes such as neuronal differentiation and metabolism. These kinases are hyperactivated in most human cancers and constitute attractive pharmacological targets. A large number of ATP-competitive inhibitors of CDKs have been identified from natural substances, in high throughput screening assays, or through structure-guided approaches. Alternative strategies have been explored to target essential protein/protein interfaces and screen for allosteric inhibitors that trap inactive intermediates or prevent conformational activation. However this remains a major challenge given the highly conserved structural features of these kinases, and calls for new and alternative screening technologies. Fluorescent biosensors constitute powerful tools for the detection of biomolecules in complex biological samples, and are well suited to study dynamic processes and highlight molecular alterations associated with pathological disorders. They further constitute sensitive and selective tools which can be readily implemented to high throughput and high content screens in drug discovery programmes. Our group has developed fluorescent biosensors to probe cyclin-dependent kinases and gain insight into their molecular behaviour in vitro and in living cells. These tools provide a means of monitoring subtle alterations in the abundance and activity of CDK/Cyclins and can respond to compounds that interfere with the conformational dynamics of these kinases. In this review we discuss the different strategies which have been devised to target CDK/Cyclins, and describe the implementation of our CDK/Cyclin biosensors to develop HTS/HCS assays in view of identifying new classes of inhibitors for cancer therapeutics.


Subject(s)
Biosensing Techniques , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Fluorescence , High-Throughput Screening Assays , Protein Kinase Inhibitors/pharmacology , Animals , Cyclin-Dependent Kinases/metabolism , Disease Models, Animal , Humans , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
6.
Biotechnol J ; 9(2): 253-65, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24357625

ABSTRACT

High throughput screening assays aim to identify small molecules that interfere with protein function, activity, or conformation, which can serve as effective tools for chemical biology studies of targets involved in physiological processes or pathways of interest or disease models, as well as templates for development of therapeutics in medicinal chemistry. Fluorescent biosensors constitute attractive and powerful tools for drug discovery programs, from high throughput screening assays, to postscreen characterization of hits, optimization of lead compounds, and preclinical evaluation of candidate drugs. They provide a means of screening for inhibitors that selectively target enzymatic activity, conformation, and/or function in vitro. Moreover, fluorescent biosensors constitute useful tools for cell- and image-based, multiplex and multiparametric, high-content screening. Application of fluorescence-based sensors to screen large and complex libraries of compounds in vitro, in cell-based formats or whole organisms requires several levels of optimization to establish robust and reproducible assays. In this review, we describe the different fluorescent biosensor technologies which have been applied to high throughput screens, and discuss the prerequisite criteria underlying their successful application. Special emphasis is placed on protein kinase biosensors, since these enzymes constitute one of the most important classes of therapeutic targets in drug discovery.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , High-Throughput Screening Assays , Protein Kinase Inhibitors , Animals , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...