Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(25): 9376-9384, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37319326

ABSTRACT

Green rust (GR), a layered double hydroxide (LDH) containing Fe, and magnetite can be found in natural and engineered environments. The ability of chloride GR (GR-Cl) and magnetite to retain iodide as a function of various parameters was investigated. Sorption equilibrium is achieved within 1 day of contact time between iodide and preformed GR-Cl in suspension. pHm variations (7.5-8.5) have no significant influence, but the iodide sorption decreases with increasing ionic strength set by NaCl. Sorption isotherms of iodide suggest that the uptake operates via ionic exchange (IC), which is supported by geochemical modeling. The short-range binding environment of iodide associated with GR is comparable to that of hydrated aqueous iodide ions in solution and is not affected by pHm or ionic strength. This finding hints at an electrostatic interaction with the Fe octahedral sheet, consistent with weak binding of charge balancing anions within an LDH interlayer. The presence of sulfate anions in significant amounts inhibits the iodide uptake due to recrystallization to a different crystal structure. Finally, the transformation of iodide-bearing GR-Cl into magnetite and ferrous hydroxide resulted in a quantitative release of iodide into the aqueous phase, suggesting that neither transformation product has an affinity for this anionic species.


Subject(s)
Chlorides , Ferrosoferric Oxide , Ferrosoferric Oxide/chemistry , Chlorides/chemistry , Iodides , Hydroxides
2.
Environ Sci Technol ; 57(9): 3661-3670, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36827231

ABSTRACT

The chemistry of technetium (t1/2(99Tc) = 2.11 × 105 years) is of particular importance in the context of nuclear waste disposal and historic contaminated sites. Polycarboxylate ligands may be present in some sites and are potentially capable of strong complexing interactions, thus increasing the solubility and mobility of 99Tc under environmentally relevant conditions. This work aimed to determine the impact of five organic complexing ligands [L = oxalate, phthalate, citrate, nitrilotriacetate (NTA), and ethylenediaminetetraacetate (EDTA)] under anoxic, alkaline conditions (pH ≈ 9-13) on the solubility of technetium. X-ray absorption spectroscopy confirmed that TcO2(am,hyd) remained the solubility-controlling solid phase in undersaturation solubility experiments. Ligands with maximum coordination numbers (CN) ≥ 3 (EDTA, NTA, and citrate) exhibited an increase in solubility from pH 9 to 11, while ligands with CN ≤ 2 (oxalate and phthalate) at all investigated pH and CN ≥ 3 at pH ≈ 13 were outcompeted by hydrolysis reactions. Though most available thermodynamic values were determined under acidic conditions, these models satisfactorily explained high-pH undersaturation solubility of technetium for citrate and NTA, whereas experimental data for Tc(IV)-EDTA were highly overestimated. This work illustrates the predominance of hydrolysis under hyperalkaline conditions and provides experimental support for existing thermodynamic models of Tc-L except Tc-EDTA, which requires further research regarding aqueous speciation and solubility.


Subject(s)
Carboxylic Acids , Technetium , Edetic Acid/chemistry , Technetium/chemistry , Solubility , Ligands , Carboxylic Acids/chemistry , Citrates , Oxidation-Reduction
3.
J Synchrotron Radiat ; 29(Pt 1): 80-88, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34985425

ABSTRACT

The ACT experimental station of the CAT-ACT wiggler beamline at the Karlsruhe Institute of Technology (KIT) Light Source is dedicated to the investigation of radionuclide materials with radioactivities up to 1000000 times the exemption limit by various speciation techniques applying monochromatic X-rays. In this article, the latest technological developments at the ACT station that enable high-resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy for low radionuclide loading samples are highlighted - encompassing the investigation of actinide elements down to 1 p.p.m. concentration - combined with a cryogenic sample environment reducing beam-induced sample alterations. One important part of this development is a versatile gas tight plexiglass encasement ensuring that all beam paths in the five-analyzer-crystal Johann-type X-ray emission spectrometer run within He atmosphere. The setup enables the easy exchange between different experiments (conventional X-ray absorption fine structure, HR-XANES, high-energy or wide-angle X-ray scattering, tender to hard X-ray spectroscopy) and opens up the possibility for the investigation of environmental samples, such as specimens containing transuranium elements from contaminated land sites or samples from sorption and diffusion experiments to mimic the far field of a breached nuclear waste repository.

4.
Inorg Chem ; 59(1): 8-22, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31834788

ABSTRACT

Neptunium(V) and uranium(VI) are precipitated from an aqueous potassium-sodium-containing carbonate-rich solution, and the solid phases are investigated. U/Np M4,5-edge high-energy resolution X-ray absorption near edge structure (HR-XANES) spectroscopy and Np 3d4f resonant inelastic X-ray scattering (3d4f RIXS) are applied in combination with thermodynamic calculations, U/Np L3-edge XANES, and extended X-ray absorption fine structure (EXAFS) studies to analyze the local atomic coordination and oxidation states of uranium and neptunium. The XANES/HR-XANES analyses are supported by ab initio quantum-chemical computations with the finite difference method near-edge structure code (FDMNES). The solid precipitates are also investigated with powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results strongly suggest that K[NpVO2CO3](cr), K3[NpVO2(CO3)2](cr), and K3Na[UVIO2(CO3)3](cr) are the predominant neptunium and uranium solid phases formed. Despite the 100 times lower initial neptunium(V) concentration at pH 10.5 and oxic conditions, neptunium(V)-rich phases predominately precipitate. The prevailing formation of neptunium(V) over uranium(VI) solids demonstrates the high structural stability of neptunium(V) carbonates containing potassium. It is illustrated that the Np M5-edge HR-XANES spectra are sensitive to changes of the Np-O axial bond length for neptunyl(V/VI).

5.
Dalton Trans ; 45(18): 7847-55, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27063438

ABSTRACT

Cubic fluorite-type phases have been reported in the U(IV)O2-Bi2O3 system for the entire compositional range, but an unusual non-linear variation of the lattice parameter with uranium substitution has been observed. In the current extensive investigation of the uranium(iv) oxide-bismuth(iii) oxide system, this behaviour of the lattice parameter evolution with composition has been confirmed and its origin identified. Even under inert atmosphere at 800 °C, U(IV) oxidises to U(V)/U(VI) as a function of the substitution degree. Thus, using a combination of three methods (XRD, XANES and Raman) we have identified the formation of the BiU(V)O4 and Bi2U(VI)O6 compounds, within this series. Moreover, we present here the Rietveld refinement of BiU(V)O4 at room temperature and we report the thermal expansion of both BiU(V)O4 and Bi2U(VI)O6 compounds.

6.
J Synchrotron Radiat ; 22(1): 91-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25537593

ABSTRACT

A portable ultrahigh-vacuum system optimized for in situ variable-temperature X-ray scattering and spectroscopy experiments at synchrotron radiation beamlines was constructed and brought into operation at the synchrotron radiation facility ANKA of the Karlsruhe Institute of Technology, Germany. Here the main features of the new instrument are described and its capabilities demonstrated. The surface morphology, structure and stoichiometry of EuSi2 nano-islands are determined by in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy. A size reduction of about a factor of two of the nano-islands due to silicide decomposition and Eu desorption is observed after sample annealing at 1270 K for 30 min.

7.
Chemistry ; 20(33): 10431-8, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25042621

ABSTRACT

Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements.

8.
Dalton Trans ; 43(11): 4400-7, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24276712

ABSTRACT

The solid-sate structures of the two uranyl peroxides studtite, [UO2(η(2)-O2)(H2O)2]·2H2O, and metastudtite [UO2(η(2)-O2)(H2O)2] have been determined by U-L3 edge extended X-ray absorption fine structure (EXAFS) spectroscopy and show that upon removal of the interstitial water in studtite there are structural changes with a small shortening of the U-O(peroxo) and small lengthening of the U-O(yl) bonds. High-energy resolution X-Ray absorption near edge structure (HR-XANES) spectroscopy has been used to probe the differences in the local electronic structure and, supported by ab initio FEFF9.5.1 calculations, dehydration causes a shift to higher energies of the occupied O p-DOS and U d- and f-DOS of metastudtite. The HR-XANES spectrum of schoepite, [(UO2)4O(OH)6]·6H2O, has been measured as the White Line intensity can give information on the mixing of metal and ligand atomic orbitals. There is an indication for higher degree of ionicity for the U-OH bond in schoepite compared to the U-O2 bond in studtite.

SELECTION OF CITATIONS
SEARCH DETAIL
...