Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 26(1): 99-110, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36366786

ABSTRACT

The pace-of-life syndrome hypothesis provides a framework for the adaptive integration of behaviour, physiology and life history between and within species. It suggests that behaviours involving a risk of death or injury should co-vary with a higher allocation to fast reproduction. Empirical support for this hypothesis is mixed, presumably because important influencing factors such as environmental variation, are usually neglected. By experimentally manipulating food quality of wild mice living under semi-natural conditions for three generations, we show that individuals adjust their life history strategies and risk-taking behaviours as well as trait covariation (Nindividuals  = 1442). These phenotypic differences are correlated to differences in transcriptomic gene expression of primary metabolic processes in the liver while no changes in gene frequencies occurred. Our discussion emphasises the need to integrate the role of environmental conditions and phenotypic plasticity in shaping relationships among behaviour, physiology and life history in response to changing environmental conditions.


Subject(s)
Life History Traits , Reproduction , Animals , Mice , Food Quality , Gene Expression , Risk-Taking
2.
Genome Res ; 32(7): 1315-1327, 2022 07.
Article in English | MEDLINE | ID: mdl-35618417

ABSTRACT

The birth of new genes is a major molecular innovation driving phenotypic diversity across all domains of life. Although repurposing of existing protein-coding material by duplication is considered the main process of new gene formation, recent studies have discovered thousands of transcriptionally active sequences as a rich source of new genes. However, differential loss rates have to be assumed to reconcile the high birth rates of these incipient de novo genes with the dominance of ancient gene families in individual genomes. Here, we test this rapid turnover hypothesis in the context of the nematode model organism Pristionchus pacificus We extended the existing species-level phylogenomic framework by sequencing the genomes of six divergent P. pacificus strains. We used these data to study the evolutionary dynamics of different age classes and categories of origin at a population level. Contrasting de novo candidates with new families that arose by duplication and divergence from known genes, we find that de novo candidates are typically shorter, show less expression, and are overrepresented on the sex chromosome. Although the contribution of de novo candidates increases toward young age classes, multiple comparisons within the same age class showed significantly higher attrition in de novo candidates than in known genes. Similarly, young genes remain under weak evolutionary constraints with de novo candidates representing the fastest evolving subcategory. Altogether, this study provides empirical evidence for the rapid turnover hypothesis and highlights the importance of the evolutionary timescale when quantifying the contribution of different mechanisms toward new gene formation.


Subject(s)
Rhabditida , Animals , Biological Evolution , Evolution, Molecular , Genome , Humans , Phylogeny , Rhabditida/genetics , Sex Chromosomes
3.
G3 (Bethesda) ; 11(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34542594

ABSTRACT

Since the inception of the molecular clock model for sequence evolution, the investigation of protein divergence has revolved around the question of a more or less constant change of amino acid sequences, with specific overall rates for each family. Although anomalies in clock-like divergence are well known, the assumption of a constant decay rate for a given protein family is usually taken as the null model for protein evolution. However, systematic tests of this null model at a genome-wide scale have lagged behind, despite the databases' enormous growth. We focus here on divergence rate comparisons between very closely related lineages since this allows clear orthology assignments by synteny and reliable alignments, which are crucial for determining substitution rate changes. We generated a high-confidence dataset of syntenic orthologs from four ape species, including humans. We find that despite the appearance of an overall clock-like substitution pattern, several hundred protein families show lineage-specific acceleration and deceleration in divergence rates, or combinations of both in different lineages. Hence, our analysis uncovers a rather dynamic history of substitution rate changes, even between these closely related lineages, implying that one should expect that a large fraction of proteins will have had a history of episodic rate changes in deeper phylogenies. Furthermore, each of the lineages has a separate set of particularly fast diverging proteins. The genes with the highest percentage of branch-specific substitutions are ADCYAP1 in the human lineage (9.7%), CALU in chimpanzees (7.1%), SLC39A14 in the internal branch leading to humans and chimpanzees (4.1%), RNF128 in gorillas (9%), and S100Z in gibbons (15.2%). The mutational pattern in ADCYAP1 suggests a biased mutation process, possibly through asymmetric gene conversion effects. We conclude that a null model of constant change can be problematic for predicting the evolutionary trajectories of individual proteins.


Subject(s)
Evolution, Molecular , Hominidae , Animals , Genome , Humans , Pan troglodytes/genetics , Phylogeny
4.
Trends Genet ; 35(12): 914-922, 2019 12.
Article in English | MEDLINE | ID: mdl-31610892

ABSTRACT

The immense morphological and phenotypic diversity within eukaryotes coincides with large-scale differences in genic repertoires, including the presence of thousands of new genes in every genome. New genes arise through duplication and divergence of existing coding sequences or de novo from noncoding sequences. These processes together cause individual genomes to contain up to one-third of orphan genes without any detectable homology in other lineages. Recently, deep taxon phylogenomics, the genome comparisons of extremely closely related species, provided novel insight into the evolutionary dynamics of such rapidly evolving genes. This review focuses on deep taxon phylogenomics and its importance in studying the evolution of new genes and discusses challenges and opportunities.


Subject(s)
DNA Barcoding, Taxonomic , Genes , Genomics , Phylogeny , Animals , Evolution, Molecular , Genomics/methods , Nematoda/genetics
5.
G3 (Bethesda) ; 9(7): 2277-2286, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31088903

ABSTRACT

Homology is a fundamental concept in comparative biology. It is extensively used at the sequence level to make phylogenetic hypotheses and functional inferences. Nonetheless, the majority of eukaryotic genomes contain large numbers of orphan genes lacking homologs in other taxa. Generally, the fraction of orphan genes is higher in genomically undersampled clades, and in the absence of closely related genomes any hypothesis about their origin and evolution remains untestable. Previously, we sequenced ten genomes with an underlying ladder-like phylogeny to establish a phylogenomic framework for studying genome evolution in diplogastrid nematodes. Here, we use this deeply sampled data set to understand the processes that generate orphan genes in our focal species Pristionchus pacificus Based on phylostratigraphic analysis and additional bioinformatic filters, we obtained 29 high-confidence candidate genes for which mechanisms of orphan origin were proposed based on manual inspection. This revealed diverse mechanisms including annotation artifacts, chimeric origin, alternative reading frame usage, and gene splitting with subsequent gain of de novo exons. In addition, we present two cases of complete de novo origination from non-coding regions, which represents one of the first reports of de novo genes in nematodes. Thus, we conclude that de novo emergence, divergence, and mixed mechanisms contribute to novel gene formation in Pristionchus nematodes.


Subject(s)
Genes, Protozoan , Rhabditida/classification , Rhabditida/genetics , Amino Acid Sequence , Animals , Computational Biology/methods , Genome, Protozoan , Genomics/methods , Molecular Sequence Annotation , Reading Frames , Reproducibility of Results , Species Specificity
6.
Genome Res ; 28(11): 1664-1674, 2018 11.
Article in English | MEDLINE | ID: mdl-30232197

ABSTRACT

The widespread identification of genes without detectable homology in related taxa is a hallmark of genome sequencing projects in animals, together with the abundance of gene duplications. Such genes have been called novel, young, taxon-restricted, or orphans, but little is known about the mechanisms accounting for their origin, age, and mode of evolution. Phylogenomic studies relying on deep and systematic taxon sampling and using the comparative method can provide insight into the evolutionary dynamics acting on novel genes. We used a phylogenomic approach for the nematode model organism Pristionchus pacificus and sequenced six additional Pristionchus and two outgroup species. This resulted in 10 genomes with a ladder-like phylogeny, sequenced in one laboratory using the same platform and analyzed by the same bioinformatic procedures. Our analysis revealed that 68%-81% of genes are assignable to orthologous gene families, the majority of which defined nine age classes with presence/absence patterns that can be explained by single evolutionary events. Contrasting different age classes, we find that older age classes are concentrated at chromosome centers, whereas novel gene families preferentially arise at the periphery, are weakly expressed, evolve rapidly, and have a high propensity of being lost. Over time, they increase in expression and become more constrained. Thus, the detailed phylogenetic resolution allowed a comprehensive characterization of the evolutionary dynamics of Pristionchus genomes indicating that distribution of age classes and their associated differences shape chromosomal divergence. This study establishes the Pristionchus system for future research on the mechanisms that drive the formation of novel genes.


Subject(s)
Evolution, Molecular , Helminth Proteins/genetics , Phylogeny , Rhabditida/genetics , Animals , Multigene Family , Rhabditida/classification
7.
Genome Res ; 28(11): 1675-1687, 2018 11.
Article in English | MEDLINE | ID: mdl-30232198

ABSTRACT

Species-specific, new, or "orphan" genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.


Subject(s)
Epigenesis, Genetic , Evolution, Molecular , Helminth Proteins/genetics , Rhabditida/genetics , Animals , Chromatin Assembly and Disassembly , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Histone Code , Rhabditida/metabolism , Transcriptional Activation
8.
Curr Biol ; 28(19): 3123-3127.e5, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30245109

ABSTRACT

Mutation and recombination are main drivers of phenotypic diversity, but the ability to create new allelic combinations is strongly dependent on the mode of reproduction. While most animals are dioecious (i.e., separated male and female sexes), in a number of evolutionary lineages females have gained the ability to self-fertilize [1, 2], with drastic consequences on effective recombination rate, genetic diversity, and the efficacy of selection [3]. In the genus Caenorhabditis, such hermaphroditic or androdioecious lineages, including C. briggsae and C. tropicalis, display a genome shrinkage relative to their dioecious sister species C. nigoni and C. brenneri, respectively [4, 5]. However, common consequences of reproductive modes on nematode genomes remain unknown, because most taxa contain single or few androdioecious species. One exception is the genus Pristionchus, with seven androdioecious species. Pristionchus worms are found in association with scarab beetles in worldwide samplings, resulting in deep taxon sampling and currently 39 culturable and available species. Here, we use phylotranscriptomics of all 39 Pristionchus species to provide a robust phylogeny based on an alignment of more than 2,000 orthologous clusters, which indicates that the seven androdioecious species represent six independent lineages. We show that gene loss is more prevalent in all hermaphroditic lineages than in dioecious relatives and that the majority of lost genes evolved recently in the Pristionchus genus. Further, we provide evidence that genes with male-biased expression are preferentially lost in hermaphroditic lineages. This supports a contribution of adaptive gene loss to shaping nematode genomes following the evolution of hermaphroditism.


Subject(s)
Disorders of Sex Development/genetics , Reproduction/genetics , Rhabditida/genetics , Animals , Caenorhabditis/genetics , Caenorhabditis elegans/genetics , Evolution, Molecular , Female , Gene Expression Profiling/methods , Genome , Male , Nematoda/genetics , Parthenogenesis/genetics , Phylogeny , Self-Fertilization/genetics , Species Specificity
9.
Evol Dev ; 20(6): 233-243, 2018 11.
Article in English | MEDLINE | ID: mdl-30259625

ABSTRACT

Cilia are complex organelles involved in sensory perception and motility with intraflagellar transport (IFT) proteins being essential for cilia assembly and function, but little is known about cilia in an evo-devo context. For example, recent comparisons revealed conservation and divergence of IFT components in the regulation of social feeding behaviors between the nematodes Caenorhabditis elegans and Pristionchus pacificus. Here, we focus on the P. pacificus RFX transcription factor daf-19, the master regulator of ciliogenesis in C. elegans. Two CRISPR/Cas9-induced Ppa-daf-19 mutants lack ciliary structures in amphid neurons and display chemosensory defects. In contrast to IFT mutants, Ppa-daf-19 mutants do not exhibit social behavior. However, they show weak locomotive responses to shifts in oxygen concentration, suggesting partial impairment in sensing or responding to oxygen. To identify targets of Ppa-daf-19 regulation we compared the transcriptomes of Ppa-daf-19 and wild-type animals and performed a bioinformatic search for the X-box RFX binding-site across the genome. The regulatory network of Ppa-DAF-19 involves IFT genes but also many taxonomically restricted genes. We identified a conserved X-box motif as the putative binding site, which was validated for the Ppa-dyf-1 gene. Thus, Ppa-DAF-19 controls ciliogenesis, influences oxygen-induced behaviors and displays a high turnover of its regulatory network.


Subject(s)
Regulatory Factor X1/genetics , Rhabditida/cytology , Rhabditida/genetics , Transcription Factors/genetics , Animals , Cilia/metabolism , Oxygen/metabolism , Regulatory Factor X1/metabolism , Rhabditida/classification , Rhabditida/metabolism , Social Behavior , Transcription Factors/metabolism
10.
Cell Rep ; 23(10): 2835-2843.e4, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29874571

ABSTRACT

Switching between alternative complex phenotypes is often regulated by "supergenes," polymorphic clusters of linked genes such as in butterfly mimicry. In contrast, phenotypic plasticity results in alternative complex phenotypes controlled by environmental influences rather than polymorphisms. Here, we show that the developmental switch gene regulating predatory versus non-predatory mouth-form plasticity in the nematode Pristionchus pacificus is part of a multi-gene locus containing two sulfatases and two α-N-acetylglucosaminidases (nag). We provide functional characterization of all four genes, using CRISPR-Cas9-based reverse genetics, and show that nag genes and the previously identified eud-1/sulfatase have opposing influences. Members of the multi-gene locus show non-overlapping neuronal expression and epistatic relationships. The locus architecture is conserved in the entire genus Pristionchus. Interestingly, divergence between paralogs is counteracted by gene conversion, as inferred from phylogenies and genotypes of CRISPR-Cas9-induced mutants. Thus, we found that physical linkage accompanies regulatory linkage between switch genes controlling plasticity in P. pacificus.


Subject(s)
Adaptation, Physiological/genetics , Conserved Sequence , Genes, Developmental , Genetic Loci , Animals , Base Sequence , Body Patterning , Evolution, Molecular , Gene Conversion , Genes, Helminth , Interneurons/metabolism , Nematoda/genetics , Nematoda/physiology , Phenotype , Sensory Receptor Cells/metabolism , Synteny/genetics
11.
Cell Rep ; 21(3): 834-844, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29045848

ABSTRACT

The nematode Pristionchus pacificus is an established model for integrative evolutionary biology and comparative studies with Caenorhabditis elegans. While an existing genome draft facilitated the identification of several genes controlling various developmental processes, its high degree of fragmentation complicated virtually all genomic analyses. Here, we present a de novo genome assembly from single-molecule, long-read sequencing data consisting of 135 P. pacificus contigs. When combined with a genetic linkage map, 99% of the assembly could be ordered and oriented into six chromosomes. This allowed us to robustly characterize chromosomal patterns of gene density, repeat content, nucleotide diversity, linkage disequilibrium, and macrosynteny in P. pacificus. Despite widespread conservation of synteny between P. pacificus and C. elegans, we identified one major translocation from an autosome to the sex chromosome in the lineage leading to C. elegans. This highlights the potential of the chromosome-scale assembly for future genomic studies of P. pacificus.


Subject(s)
Chromosomes/genetics , Genome, Helminth , Models, Biological , Nematoda/genetics , Sequence Analysis, DNA/methods , Animals , Caenorhabditis elegans/genetics , Genetic Linkage , Genetic Variation , Nematoda/isolation & purification , Nucleotides/genetics , Phylogeny , Sex Chromosomes/genetics , Synteny/genetics
12.
BMC Bioinformatics ; 17(1): 226, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27245157

ABSTRACT

BACKGROUND: Current genome sequencing projects reveal substantial numbers of taxonomically restricted, so called orphan genes that lack homology with genes from other evolutionary lineages. However, it is not clear to what extent orphan genes are real, genomic artifacts, or represent non-coding RNAs. RESULTS: Here, we use a simple set of assumptions to test the nature of orphan genes. First, a sequence that is transcribed is considered a real biological entity. Second, every sequence that is supported by proteome data or shows a depletion of non-synonymous substitutions is a protein-coding gene. Using genomic, transcriptomic and proteomic data for the nematode Pristionchus pacificus, we show that between 4129-7997 (42-81 %) of predicted orphan genes are expressed and 3818-7545 (39-76 %) of orphan genes are under negative selection. In three cases that exhibited strong evolutionary constraint but lacked expression evidence in 14 RNA-seq samples, we could experimentally validate the predicted gene structures. Comparing different data sets to infer selection on orphan gene clusters, we find that the presence of a closely related genome provides the most powerful resource to robustly identify evidence of negative selection. However, even in the absence of other genomic data, the availability of paralogous sequences was enough to show negative selection in 8-10 % of orphan genes. CONCLUSIONS: Our study shows that the great majority of previously identified orphan genes in P. pacificus are indeed protein-coding genes. Even though this work represents a case study on a single species, our approach can be transferred to genomic data of other non-model organisms in order to ascertain the protein-coding nature of orphan genes.


Subject(s)
Nematoda/genetics , Proteomics/methods , RNA, Untranslated/genetics , Animals , Gene Expression , Humans , Multigene Family , Transcription, Genetic
13.
BMC Evol Biol ; 15: 185, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26370559

ABSTRACT

BACKGROUND: The development of multicellular organisms is accompanied by gene expression changes in differentiating cells. Profiling stage-specific expression during development may reveal important insights into gene sets that contributed to the morphological diversity across the animal kingdom. RESULTS: We sequenced RNA-seq libraries throughout a developmental timecourse of the nematode Pristionchus pacificus. The transcriptomes reflect early larval stages, adult worms including late larvae, and growth-arrested dauer larvae and allowed the identification of developmentally regulated gene clusters. Our data reveals similar trends as previous transcriptome profiling of dauer worms and represents the first expression data for early larvae in P. pacificus. Gene expression clusters characterizing early larval stages show most significant enrichments of chaperones, while collagens are most significantly enriched in transcriptomes of late larvae and adult worms. By combining expression data with phylogenetic analysis, we found that developmentally regulated genes are found in paralogous clusters that have arisen through lineage-specific duplications after the split from the Caenorhabditis elegans branch. CONCLUSIONS: We propose that gene duplications of developmentally regulated genes represent a plausible evolutionary mechanism to increase the dosage of stage-specific expression. Consequently, this may contribute to the substantial divergence in expression profiles that has been observed across larger evolutionary time scales.


Subject(s)
Gene Duplication , Nematoda/genetics , Animals , Biological Evolution , Caenorhabditis elegans/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Library , Larva/growth & development , Multigene Family , Nematoda/growth & development , Phylogeny
14.
Biochim Biophys Acta ; 1848(6): 1436-49, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25797519

ABSTRACT

The superfamily of major intrinsic proteins (MIPs) includes aquaporin (AQP) and aquaglyceroporin (AQGP) and it is involved in the transport of water and neutral solutes across the membrane. Diverse MIP sequences adopt a unique hour-glass fold with six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). Loop E contains one of the two conserved NPA motifs and contributes two residues to the aromatic/arginine selectivity filter. Function and regulation of majority of MIP channels are not yet characterized. We have analyzed the loop E region of 1468 MIP sequences and their structural models from six different organism groups. They can be phylogenetically clustered into AQGPs, AQPs, plant MIPs and other MIPs. The LE half-helix in all AQGPs contains an intra-helical salt-bridge and helix-breaking residues Gly/Pro within the same helical turn. All non-AQGPs lack this salt-bridge but have the helix destabilizing Gly and/or Pro in the same positions. However, the segment connecting LE half-helix and TM6 is longer by 10-15 residues in AQGPs compared to all non-AQGPs. We speculate that this longer loop in AQGPs and the LE half-helix of non-AQGPs will be relatively more flexible and this could be functionally important. Molecular dynamics simulations on glycerol-specific GlpF, water-transporting AQP1, its mutant and a fungal AQP channel confirm these predictions. Thus two distinct regions of loop E, one in AQGPs and the other in non-AQGPs, seem to be capable of modulating the transport. These regions can also act in conjunction with other extracellular residues/segments to regulate MIP channel transport.


Subject(s)
Amino Acids/chemistry , Aquaporins/chemistry , Salts/chemistry , Amino Acid Sequence , Animals , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Phylogeny , Protein Stability , Protein Structure, Secondary
15.
BMC Evol Biol ; 14: 173, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25112373

ABSTRACT

BACKGROUND: Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins (MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts. RESULTS: We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (δ and γ2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating. CONCLUSIONS: Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the δ AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions.


Subject(s)
Fungal Proteins/genetics , Fungi/metabolism , Membrane Transport Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungi/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phylogeny , Plants/microbiology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...