Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
2.
Mater Sci Eng C Mater Biol Appl ; 80: 75-87, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28866225

ABSTRACT

Membranes used in dentistry act as a barrier to prevent invasion of intruder cells to defected area and obtains spaces that are to be subsequently filled with new bone and provide required bone volume for implant therapy when there is insufficient volume of healthy bone at implant site. In this study a two-layered bioactive membrane were fabricated by electrospinning whereas one layer provides guided bone regeneration (GBR) and fabricated using poly glycerol sebacate (PGS)/polycaprolactone (PCL) and Beta tri-calcium phosphate (ß-TCP) (5, 10 and 15%) and another one containing PCL/PGS and chitosan acts as guided tissue regeneration (GTR). The morphology, chemical, physical and mechanical characterizations of the membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile testing, then biodegradability and bioactivity properties were evaluated. In vitro cell culture study was also carried out to investigate proliferation and mineralization of cells on different membranes. Transmission electron microscope (TEM) and SEM results indicated agglomeration of ß-TCP nanoparticles in the structure of nanofibers containing 15% ß-TCP. Moreover by addition of ß-TCP from 5% to 15%, contact angle decreased due to hydrophilicity of nanoparticles and bioactivity was found to increase. Mechanical properties of the membrane increased by incorporation of 5% and 10% of ß-TCP in the structure of nanofibers, while addition of 15% of ß-TCP was found to deteriorate mechanical properties of nanofibers. Although the presence of 5% and 10% of nanoparticles in the nanofibers increased proliferation of cells on GBR layer, cell proliferation was observed to decrease by addition of 15% ß-TCP in the structure of nanofibers which is likely due to agglomeration of nanoparticles in the nanofiber structure. Our overall results revealed PCL/PGS containing 10% ß-TCP could be selected as the optimum GBR membrane in view point of physical and mechanical properties along with cell behavior. PCL/PGS nanofibers containing 10% ß-TCP were electrospun on the GTR layer for fabrication of final membrane. Addition of chitosan in the structure of PCL/PGS nanofibers was found to decrease fiber diameter, contact angle and porosity which are favorable for GTR layer. Two-layered dental membrane fabricated in this study can serve as a suitable substrate for application in dentistry as it provides appropriate osteoconductivity and flexibility along with barrier properties.


Subject(s)
Nanofibers , Biocompatible Materials , Bone Regeneration , Bone and Bones , Guided Tissue Regeneration
3.
Mater Sci Eng C Mater Biol Appl ; 81: 39-47, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28887989

ABSTRACT

Physiological functionality of a tissue engineered vascular construct depends on the phenotype of smooth muscle cells (SMCs) cultured into the scaffold and mechanical robust of the construct relies on two simultaneous mechanisms including scaffold biodegradation and de novo matrix synthesis by SMCs which both can be influenced by scaffold properties and culture condition. Our focus in this study was to provide an appropriate environmental condition within tissue engineering context to meet foregoing requisites for a successful vascular regeneration. To this end, SMCs seeded onto electrospun Tecophilic/gelatin (TP(70)/gel(30)) scaffolds were subjected to orbital shear stress. Given the improvement in mechanical properties of dynamically stimulated cell-seeded constructs after a span of 10days, effect of fluctuating shear stress on scaffold biodegradation and SMC behavior was investigated. Compared to static condition, SMCs proliferated more rapidly and concomitantly built up greater collagen content in response to dynamic culture, suggesting a reasonable balance between scaffold biodegradation and matrix turnover for maintaining the structural integrity and mechanical support to seeded cells during early phase of vascular tissue engineering. Despite higher proliferation of SMCs under dynamic condition, cells preserved nearly spindle like morphology and contractile protein expression likely thanks to composition of the scaffold.


Subject(s)
Biomimetics , Cell Proliferation , Cells, Cultured , Myocytes, Smooth Muscle , Tissue Engineering , Tissue Scaffolds
4.
Mater Sci Eng C Mater Biol Appl ; 79: 687-696, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28629069

ABSTRACT

To engineer bone tissue, it is crucial to design scaffolds with micro- and nano-sized architecture imitating approximate hierarchical structure of native bone, and afford desirable biological properties by introducing biocompatible polymers and bioceramics into the scaffolds. Here, a novel scaffold consisting of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV)/polyaspartic acid (PAA) was fabricated by electrospinning and nano-hydroxyapatite (nHA) was deposited by calcium-phosphate dipping process for bone tissue regeneration. Characterization of the prepared nanofibers revealed the formation of definite nHA crystal, porous structure of membranes, improved wettability with nHA deposition and satisfied mechanical properties. Human fetal osteoblasts were cultured on nanofibers and experienced in vitro evaluations of cell proliferation, adhesion and mineralization confirming the non-cytotoxicity and biocompatibility of scaffolds. Cells proliferation rate and ALP expression on PHBV/PAA-nHA were 36.40% and 40.14% higher than on PHBV/PAA, respectively. The utmost significance of this study is introducing bioactive PAA-nHA on polymeric nanofibers to regulate and improve specific cells adhesion, proliferation and mineralization of osteoblasts. All results indicate PHBV/PAA-nHA nanofibrous scaffolds can be applied as biomimetic platform for bone tissue repairation with appropriate physico-chemical properties, osteoinductivity and osteoconductivity.


Subject(s)
Osteoblasts , Biomimetics , Cell Proliferation , Durapatite , Humans , Hydroxybutyrates , Polyesters , Tissue Engineering , Tissue Scaffolds
6.
J Tissue Eng Regen Med ; 11(4): 1002-1010, 2017 04.
Article in English | MEDLINE | ID: mdl-25631665

ABSTRACT

Heart disease, especially myocardial infarction (MI), has become the leading cause of death all over the world, especially since the myocardium lacks the ability to regenerate after infarction. The capability of mesenchymal stem cells (MSCs) to differentiate into the cardiac lineage holds great potential in regenerative medicine for MI treatment. In this study, we investigated the potential of human MSCs (hMSCs) to differentiate into cardiomyogenic cell lineages, using 5-azacytidine (5-aza) on electrospun poly(ε-caprolactone)-gelatin (PCL-gelatin) nanofibrous scaffolds. Immunofluorescence staining analysis showed that after 15 days of in vitro culture the hMSCs differentiated to cardiomyogenic cells on PCL-gelatin (PG) nanofibers and expressed a higher level of cardiac-specific proteins, such as α-actinin and troponin-T, compared to the MSC-differentiated CMs on tissue culture plates (control). To further induce the cardiac differentiation, vascular endothelial growth factor (VEGF) was incorporated into the nanofibers by blending or co-axial electrospinning, and in vitro release study showed that the growth factor could cause sustained release of VEGF from the nanofibers for a period of up to 21 days. The incorporation of VEGF within the nanofibers improved the proliferation of MSCs and, more importantly, enhanced the expression of cardiac-specific proteins on PG-VEGF nanofibers. Our study demonstrated that the electrospun PG nanofibers encapsulated with VEGF have the ability to promote cardiac differentiation of hMSCs, and might be promising scaffolds for myocardial regeneration. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Cell Differentiation/drug effects , Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Nanofibers/chemistry , Tissue Engineering/methods , Vascular Endothelial Growth Factor A/pharmacology , Cell Proliferation/drug effects , Cell Shape/drug effects , Drug Liberation , Humans , Mesenchymal Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Nanofibers/ultrastructure , Organ Specificity
7.
Colloids Surf B Biointerfaces ; 148: 557-565, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27690245

ABSTRACT

A porous shape memory scaffold with both biomimetic structures and electrical conductivity properties is highly promising for nerve tissue engineering applications. In this study, a new shape memory polyurethane polymer which consists of inorganic polydimethylsiloxane (PDMS) segments with organic poly(ε-caprolactone) (PCL) segments was synthesized. Based on this poly(PCL/PDMS urethane), a series of electrically conductive nanofibers were electrospun by incorporating different amounts of carbon-black. Our results showed that after adding carbon black into nanofibers, the fiber diameters increased from 399±76 to 619±138nm, the crystallinity decreased from 33 to 25% and the resistivity reduced from 3.6 GΩ/mm to 1.8 kΩ/mm. Carbon black did not significantly influence the shape memory properties of the resulting nanofibers, and all the composite nanofibers exhibited decent shape recovery ratios of >90% and shape fixity ratios of >82% even after 5 thermo-mechanical cycles. PC12 cells were cultured on the shape memory nanofibers and the composite scaffolds showed good biocompatibility by promoting cell-cell interactions. Our study demonstrated that the poly(PCL/PDMS urethane)/carbon-black nanofibers with shape memory properties could be potentially used as smart 4-dimensional (4D) scaffolds for nerve tissue regeneration.


Subject(s)
Biocompatible Materials/chemistry , Dimethylpolysiloxanes/chemistry , Electric Conductivity , Nanofibers/chemistry , Polyesters/chemistry , Animals , Cell Communication , Electrochemical Techniques/methods , Microscopy, Electron, Scanning , Nanofibers/ultrastructure , Nerve Regeneration , PC12 Cells , Polyurethanes/chemistry , Porosity , Rats , Soot/chemistry , Temperature , Tissue Engineering/methods , Tissue Scaffolds/chemistry
8.
Acta Biomater ; 42: 316-328, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27397493

ABSTRACT

UNLABELLED: Drug-eluting stents (DESs), have shown promising results in prevention of in-stent restenosis after percutaneous coronary intervention (PCI). The elevated level of leukotrienes (LTs) detected in injured arteries after PCI, together with the potential role of LTs in inflammatory cascades and structural alterations in arterial wall provides the rationale for development of therapeutic strategies for prevention of in-stent restenosis using LTs receptor antagonists. Montelukast (MK) is a selective cysLT1 receptor antagonist, with anti-inflammatory and anti-proliferative properties, which has been used for treatment of various diseases. Here, we report on the fabrication of MK/PLGA particles by electrospraying, aiming towards the development of particle based coating of DESs. The electrosprayed particles incorporated with 3% and 6% w/w MK exhibited fairly spherical shape with smooth surfaces and narrow size distribution. Sustained release of MK for up to 40days was obtained for both formulations, with higher initial burst release and drug release rate for the particles with higher drug loading. The LTD4 induced proliferation and migration of human coronary artery smooth muscle cells (HCASMCs) by 35% and 85%, respectively, which was substantially antagonized using MK incorporated particles. Nevertheless, MK antagonism preserved the normal proliferation and migration of human coronary artery endothelial cells (HCAECs). Moreover, MK antagonism inhibited the LTD4 induced phenotypic transition of HCASMCs from contractile to synthetic type. The electrosprayed MK-PLGA particles can be employed as a coating for DESs to inhibit the formation of neointimal hyperplasia responsible for in-stent restenosis, yet preserve the healing rate of the stented vessel. STATEMENT OF SIGNIFICANT: Montelukast (MK) is a selective cysLT1 receptor antagonist, with anti-inflammatory and anti-proliferative properties. The LTD4 induced proliferation and migration of human coronary artery smooth muscle cells by 35% and 85%, respectively, which was substantially antagonized using MK incorporated particles. MK antagonism preserved the normal proliferation and migration of human coronary artery endothelial cells. The MK antagonism inhibited the phenotypic transition of human coronary artery smooth muscle cells from contractile to synthetic one induced by LTD4. The electrosprayed MK-PLGA particles can be employed as coating for DESs to inhibit formation of neointimal hyperplasia, responsible for in-stent restenosis.


Subject(s)
Acetates/therapeutic use , Coated Materials, Biocompatible/chemistry , Coronary Restenosis/drug therapy , Coronary Restenosis/prevention & control , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Quinolines/therapeutic use , Stents , Acetates/pharmacology , Calorimetry, Differential Scanning , Cell Count , Cell Movement/drug effects , Cell Proliferation/drug effects , Coronary Restenosis/pathology , Coronary Vessels/pathology , Cyclopropanes , Drug Liberation , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Flow Cytometry , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Phenotype , Polylactic Acid-Polyglycolic Acid Copolymer , Quinolines/pharmacology , Receptors, Leukotriene/metabolism , Sulfides
9.
Colloids Surf B Biointerfaces ; 145: 420-429, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27232305

ABSTRACT

Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications.


Subject(s)
Biocompatible Materials/chemistry , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Differentiation/drug effects , Electric Stimulation , Nerve Regeneration/drug effects , PC12 Cells , Polyesters/chemistry , Polymers/chemistry , Pyrroles/chemistry , Rats , Tissue Engineering
10.
Mater Sci Eng C Mater Biol Appl ; 63: 106-16, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27040201

ABSTRACT

Fabrication of bioactive scaffolds is one of the most promising strategies to reconstruct the infarcted myocardium. In this study, we synthesized polyester urethane urea (PEUU), further blended it with gelatin and fabricated PEUU/G nanofibrous scaffolds. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and X-ray diffraction were used for the characterization of the synthesized PEUU and properties of nanofibrous scaffolds were evaluated using scanning electron microscopy (SEM), ATR-FTIR, contact angle measurement, biodegradation test, tensile strength analysis and dynamic mechanical analysis (DMA). In vitro biocompatibility studies were performed using cardiomyocytes. DMA analysis showed that the scaffolds could be reshaped with cyclic deformations and might remain stable in the frequencies of the physiological activity of the heart. On the whole, our study suggests that aligned PEUU/G 70:30 nanofibrous scaffolds meet the required specifications for cardiac tissue engineering and could be used as a promising construct for myocardial regeneration.


Subject(s)
Biocompatible Materials/chemistry , Nanofibers/chemistry , Polyurethanes/chemistry , Tissue Engineering , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/toxicity , Calorimetry, Differential Scanning , Cell Survival/drug effects , Cells, Cultured , Gelatin/chemistry , Heart/physiology , Microscopy, Electron, Scanning , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Rabbits , Rats , Regeneration/physiology , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Tissue Scaffolds/chemistry , X-Ray Diffraction
11.
Carbohydr Polym ; 140: 104-12, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26876833

ABSTRACT

Nanofibrous nerve guides have gained huge interest in supporting the peripheral nerve regeneration due to their abilities to simulate the topography, mechanical, biological and extracellular matrix morphology of native tissue. Gum tragacanth (GT) is a biocompatible mixture of polysaccharides that has been used in biomedical applications. During this study, we fabricated aligned and random nanofibers from poly(l-lactic acid) and gum tragacanth (PLLA/GT) in various ratios (100:0, 75:25, and 50:50) by electrospinning. Scanning electron microscope demonstrated smooth and uniform nanofibers with diameters in the range of 733±65nm and 226±73nm for align PLLA and random PLLA/GT 50:50 nanofibers, respectively. FTIR analysis, contact angle, in vitro biodegradation and tensile measurements were carried out to evaluate the chemical and mechanical properties of the different scaffolds. PLLA/GT 75:25 exhibited the most balanced properties compared to other scaffolds and was used for in vitro culture of nerve cells (PC12) to assess the potential of using these scaffolds as a substrate for nerve regeneration. The cells were found to attach and proliferate on aligned PLLA/GT 75:25 scaffolds, expressing bi-polar neurite extensions and the orientation of nerve cells was along the direction of the fiber alignment. Results of 8 days of in vitro culture of PC12 cells on aligned PLLA/GT 75:25 nanofibers, showed 20% increase in cell proliferation compared to PLLA/GT 75:25 random nanofibers. PLLA/GT 75:25 aligned nanofibers acted as a favorable cue to support neurite outgrowth and nerve cell elongation compared with PLLA nanofibers. Our results showed that aligned PLLA/GT 75:25 nanofibers are promising substrates for application as bioengineered grafts for nerve tissue regeneration.


Subject(s)
Biocompatible Materials/pharmacology , Nanofibers/chemistry , Nerve Regeneration/drug effects , Peripheral Nerves/drug effects , Polyesters/chemistry , Tissue Scaffolds/chemistry , Tragacanth/chemistry , Animals , Biocompatible Materials/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Hydrophobic and Hydrophilic Interactions , Mechanical Phenomena , PC12 Cells , Peripheral Nerves/cytology , Peripheral Nerves/physiology , Rats , Tissue Engineering
12.
Biomed Mater ; 11(1): 015007, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26836757

ABSTRACT

A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.


Subject(s)
Bone Substitutes/chemical synthesis , Dimethylpolysiloxanes/chemistry , Nanofibers/chemistry , Osteoblasts/physiology , Polyesters/chemical synthesis , Tissue Scaffolds , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Hot Temperature , Humans , Nanofibers/ultrastructure , Osteoblasts/cytology , Stress, Mechanical , Tensile Strength , Tissue Engineering/instrumentation , Tissue Engineering/methods
13.
Mater Sci Eng C Mater Biol Appl ; 59: 420-428, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652392

ABSTRACT

Development of composite nanofibrous membrane via electrospinning a polymer with ceramic nanoparticles (NPs) for application in protein separation systems is explored during this study. Positively charged zinc doped hydroxyapatite (xZH) NPs were prepared in three different compositions via chemical precipitation method. Herein, we created a positively charged surface containing nanoparticles on electrospun Nylon-6 nanofibers (NFs) to improve the separation and selectivity properties for adsorption of negatively charged protein, namely bovine serum albumin (BSA). The decline in permeate flux was analyzed using the framework of classical blocking models and fitting, demonstrated that the transition of fouling mechanisms was dominated during the filtration process. The standard blocking model provided the best fit of the experimental results during the mid-filtration period. The membrane decorated by NPs containing 4at.% zinc cations not only provided maximum BSA separation but also capable of separating higher amounts of BSA molecules (even after 1h filtration) than the pure Nylon membrane. Protein separation was achieved through this membrane with the incorporation of NPs that had high zeta potential (+5.9±0.2mV) and lower particle area (22,155nm(2)). The developed membrane has great potential to act as a high efficiency membrane for capturing BSA.


Subject(s)
Caprolactam/analogs & derivatives , Durapatite/chemistry , Membranes, Artificial , Models, Chemical , Nanofibers/chemistry , Polymers/chemistry , Serum Albumin, Bovine , Animals , Caprolactam/chemistry , Cattle , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/isolation & purification
14.
Polymers (Basel) ; 8(2)2016 Feb 19.
Article in English | MEDLINE | ID: mdl-30979150

ABSTRACT

Peripheral nerve injury is a serious clinical problem to be solved. There has been no breakthrough so far and neural tissue engineering offers a promising approach to promote the regeneration of peripheral neural injuries. In this study, emulsion electrospinning technique was introduced as a flexible and promising technique for the fabrication of random (R) and aligned (A) Poly(ε-caprolactone) (PCL)-Nerve Growth Factor (NGF)&Bovine Serum Albumin (BSA) nanofibrous scaffolds [(R/A)-PCL-NGF&BSA], where NGF and BSA were encapsulated in the core while PCL form the shell. Random and aligned pure PCL, PCL-BSA, and PCL-NGF nanofibers were also produced for comparison. The scaffolds were characterized by Field Emission Scanning Electron Microscopy (FESEM) and water contact angle test. Release study showed that, with the addition of stabilizer BSA, a sustained release of NGF from emulsion electrospun PCL nanofibers was observed over 28 days. [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] assay revealed that (R/A)-PCL-NGF and (R/A)-PCL-NGF&BSA scaffolds favored cell growth and showed no cytotoxicity to PC12 cells. Laser scanning confocal microscope images exhibited that the A-PCL-NGF&BSA scaffold increased the length of neurites and directed neurites extension along the fiber axis, indicating that the A-PCL-NGF&BSA scaffold has a potential for guiding nerve tissue growth and promoting nerve regeneration.

15.
Mater Sci Eng C Mater Biol Appl ; 56: 66-73, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26249566

ABSTRACT

Advanced engineering of materials for the development of drug delivery devices provides scope for novel and versatile strategies for treatment of various diseases. 'Electrospraying' was used to prepare PLGA microparticles and further encapsulate the drug, metronidazole (Met) within the particles to function as a drug delivery system. Two different solvents were utilized for the preparation of drug loaded PLGA particles, whereby the polymeric solution in dichloromethane (DCM) produced particles of bigger sizes than using trifluoroethanol (TFE). Scanning electron microscopy showed the spherical morphology of the particles, with sizes of 3946±407nm and 1774±167nm, respectively for PLGA-Met(DCM) and PLGA-Met(TFE). The FTIR spectroscopy proved the incorporation of metronidazole in the polymer, but without any specific drug-polymer interaction. The release of the drug from the particles was studied in phosphate buffered saline, where a sustained drug release was obtained for at least 41days. Cytotoxicity evaluation of the drug extract using mesenchymal stem cells (MSCs) showed not hindering the proliferation of MSCs, and the cell phenotype was retained after incubation in the drug containing media. Electrospraying is suggested as a cost-effective and single step process for the preparation of polymeric microparticles for prolonged and controlled release of drug.


Subject(s)
Lactic Acid/chemistry , Metronidazole/chemistry , Polyglycolic Acid/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Mesenchymal Stem Cells/drug effects , Methylene Chloride/chemistry , Metronidazole/pharmacology , Microscopy, Electron, Scanning/methods , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Solvents/chemistry , Surface Properties , Trifluoroethanol/chemistry
16.
J Mech Behav Biomed Mater ; 51: 88-98, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26232670

ABSTRACT

Bio-engineered scaffolds for bone tissue regeneration is an exploding area of research mainly because they can satisfy the essential demands and current challenges in bone replacement therapies, by imitating the extracellular matrix (ECM) of the native bone. We fabricated bio-composite nanofibrous scaffolds with a blend of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), chitosan (CTS) and hydroxyapatite (HA) during this study. Morphological evaluation confirmed the fiber diameters of PHBV, PHBV/CTS (90:10), PHBV/CTS/HA4 (85.5:9.5:5) and PHBV/CTS/HA8 (81:9:10) as 405 ± 74 nm, 334 ± 82 nm, 316 ± 103 nm and 256 ± 110 nm, respectively. The PHBV/CTS/HA4 and PHBV/CTS/HA8 scaffolds were capable of enduring the long term culture of human fetal osteoblasts (hFOB) with ultimate tensile strength of 3.55 ± 0.22 MPa and 4.19 ± 0.19 MPa, respectively. The proliferation of osteoblasts on PHBV/CTS/HA8 scaffold was found 34.10% higher than that on PHBV scaffold on day 20. Cell maturation identified by alkaline phosphatase activity on day 20 was significantly higher on PHBV/CTS/HA8 scaffold than that on PHBV scaffold. The cells on PHBV/CTS/HA8 scaffold also acquired higher mineral deposition (25.79%) than the mineral deposition on PHBV scaffold by day 20, confirmed by EDX analysis. Based on the results, we concluded that the electrospun PHBV/CTS/HA8 scaffolds hold great potential to promote the regeneration of bone tissue due to the synergistic effect of chitosan and HA, whereby chitosan provided cell recognition sites while HA acted as a chelating agent for organizing the apatite-like mineralization.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Chitosan/chemistry , Durapatite/chemistry , Mechanical Phenomena , Polyesters/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Humans , Nanofibers/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects , Tissue Engineering
17.
World J Stem Cells ; 7(4): 728-44, 2015 May 26.
Article in English | MEDLINE | ID: mdl-26029344

ABSTRACT

Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.

18.
J Colloid Interface Sci ; 451: 144-52, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25897850

ABSTRACT

Stromal derived factor-1α (SDF-1α) has shown promising results in treatment of myocardial infarction (MI), via recruitment of endogenous stem cells into the injured myocardium. However, the bioactivity of this susceptible signalling chemokine is reduced significantly during the common fabrication processes of drug delivery systems, due to the exposure to organic-aqueous interfaces or elevated temperature. In this study, we developed a novel SDF-1α delivery system using coaxial electrospraying, the technique which enables fabrication of core-shell particles with minimized contact of organic-aqueous phases. The SDF-1α incorporated PLGA particles exhibited distinct core-shell structure, confirmed by transmission electron microscopy (TEM). Controlled release of SDF-1α was obtained for at least 40days, and the release rate was tailored by co-encapsulation of bovine serum albumin (BSA) into the core of the particles. The SDF-1α released from PLGA/SDF-1α and PLGA/BSA-SDF-1α particles retained its chemotactic activity, and enhanced the number of migrated mesenchymal stem cells (MSCs) by 38% and 54%, respectively, compared to basal medium used as the control. Moreover, both SDF-1α and BSA supported the proliferation of MSCs within 3days of cell culture. The SDF-1α incorporated core-shell particles developed by electrospraying technique, can be effectively employed as injectable drug delivery system for in situ cardiac regeneration.


Subject(s)
Chemokine CXCL12/administration & dosage , Delayed-Action Preparations/chemistry , Lactic Acid/chemistry , Mesenchymal Stem Cells/cytology , Polyglycolic Acid/chemistry , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CXCL12/pharmacology , Heart/physiology , Humans , Mesenchymal Stem Cells/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer , Regeneration , Tissue Engineering
19.
J Biomater Appl ; 29(10): 1394-406, 2015 May.
Article in English | MEDLINE | ID: mdl-25592285

ABSTRACT

Nano/micro engineered polymeric materials offer expansive scope of biomimetic scaffolds for bone tissue engineering especially those involving electrospun biodegradable nanofibers incorporated with inorganic nanoparticles, thus mimicking the extracellular matrix of bone both structurally and chemically. For the first time, poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing natural poly-(α, ß)-DL-aspartic acid and inorganic hydroxyapatite nanofibers were fabricated using poly-3-hydroxybutyrate-co-3-hydroxyvalerate: poly-(α, ß)-DL-aspartic acid at a ratio of 80:20 (w/w) added with 1% (w/v) of hydroxyapatite, by the process of electrospinning. The surface morphology, chemical, and mechanical properties of electrospun poly-3-hydroxybutyrate-co-3-hydroxyvalerate, poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, ß)-DL-aspartic acid, and poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, ß)-DL-aspartic acid/hydroxyapatite nanofibers were characterized by using field emission scanning electron microscope, Fourier transform infrared spectroscopy, and tensile tester, respectively. Human fetal osteoblasts were cultured on different nanofibrous scaffolds for evaluating the cell proliferation, alkaline phosphatase activity, and mineralization. Cells on poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, ß)-DL-aspartic acid/hydroxyapatite scaffolds demonstrated higher proliferation (30.10%) and mineral deposition (37.60%) than the cells grown on pure poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds. Obtained results highlight the synergistic effect of poly-3-hydroxybutyrate-co-3-hydroxyvalerate, poly-(α, ß)-DL-aspartic acid, and hydroxyapatite towards the enhancement of the osteoinductivity and osteoconductivity of human fetal osteoblasts, demonstrating the appropriate physicochemical and biological properties of poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, ß)-DL-aspartic acid/hydroxyapatite nanofibers to function as a substrate for bone tissue regeneration.


Subject(s)
Biomimetic Materials/chemistry , Bone Regeneration/physiology , Osteoblasts/physiology , Polyesters/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Biocompatible Materials/chemistry , Biomechanical Phenomena , Calcification, Physiologic/physiology , Cell Proliferation , Cells, Cultured , Durapatite/chemistry , Humans , Materials Testing , Microscopy, Electron, Scanning , Nanofibers/chemistry , Nanofibers/ultrastructure , Osteoblasts/cytology , Osteocalcin/metabolism , Osteogenesis/physiology , Spectroscopy, Fourier Transform Infrared
20.
Regen Biomater ; 2(1): 31-45, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26813399

ABSTRACT

Nerve diseases including acute injury such as peripheral nerve injury (PNI), spinal cord injury (SCI) and traumatic brain injury (TBI), and chronic disease like neurodegeneration disease can cause various function disorders of nervous system, such as those relating to memory and voluntary movement. These nerve diseases produce great burden for individual families and the society, for which a lot of efforts have been made. Axonal pathways represent a unidirectional and aligned architecture allowing systematic axonal development within the tissue. Following a traumatic injury, the intricate architecture suffers disruption leading to inhibition of growth and loss of guidance. Due to limited capacity of the body to regenerate axonal pathways, it is desirable to have biomimetic approach that has the capacity to graft a bridge across the lesion while providing optimal mechanical and biochemical cues for tissue regeneration. And for central nervous system injury, one more extra precondition is compulsory: creating a less inhibitory surrounding for axonal growth. Electrospinning is a cost-effective and straightforward technique to fabricate extracellular matrix (ECM)-like nanofibrous structures, with various fibrous forms such as random fibers, aligned fibers, 3D fibrous scaffold and core-shell fibers from a variety of polymers. The diversity and versatility of electrospinning technique, together with functionalizing cues such as neurotrophins, ECM-based proteins and conductive polymers, have gained considerable success for the nerve tissue applications. We are convinced that in the future the stem cell therapy with the support of functionalized electrospun nerve scaffolds could be a promising therapy to cure nerve diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...