Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 24(50): 505503, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24284553

ABSTRACT

This paper describes a 'turn-on' fluorescent determination of Cu(II) in an aqueous medium using folic acid capped gold nanoparticles (FA-AuNPs) as the probe. The FA-AuNPs were synthesized by the wet chemical method and were characterized by UV-visible, fluorescence, HR-TEM, XRD, zeta potential, and DLS techniques. The FA-AuNPs show an absorption maximum at 510 nm and an emission maximum at 780 nm (λ(ex): 510 nm). On adding 10 µM Cu(II), the wine-red color of FA-AuNPs changed to purple and the absorbance at 510 nm decreased. The observed changes were ascribed to the aggregation of AuNPs. This was confirmed by DLS and HR-TEM studies. Interestingly, the emission intensity of FA-AuNPs was enhanced even in the presence of a picomolar concentration of Cu(II). Based on the enhancement of the emission intensity, the concentration of Cu(II) was determined. The FA-AuNPs showed an extreme selectivity towards the determination of 10 nM Cu(II) in the presence of 10,000-fold higher concentration of interferences except EDTA and the carboxylate anion. A good linearity was observed from 10 × 10(-9) to 1 × 10(-12) M Cu(II), and the detection limit was found to be 50 fM l(-1) (S/N = 3). The proposed method was successfully applied to determine Cu(II) in real samples. The results obtained were validated with ICP-AES.

2.
Article in English | MEDLINE | ID: mdl-22983203

ABSTRACT

In the present study, the biosynthesis of rutile TiO(2) nanoparticles (TiO(2) NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO(2) NPs at lower temperature using agricultural waste. Rutile TiO(2) NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO(2) NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO(2) NPs as observed from the XRD spectrum is confirmed to be TiO(2) particles in the rutile form as evidenced by the peaks at 2θ=27.42°, 36.10°, 41.30° and 54.33° when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 23±2 nm ranges.


Subject(s)
Annona/chemistry , Coloring Agents/chemistry , Green Chemistry Technology/methods , Nanoparticles/chemistry , Plant Extracts/chemistry , Titanium/chemistry , Green Chemistry Technology/economics , Nanoparticles/ultrastructure , Plant Extracts/chemical synthesis , Spectrophotometry, Ultraviolet , Surface Plasmon Resonance , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...