Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 40(2): 447-453, 2021 02.
Article in English | MEDLINE | ID: mdl-33179787

ABSTRACT

Tumor angiogenesis is the main target in cancer drug development. Discovery of antiangiogenic agents targeting different mechanisms of action is the major area of research to control tumor growth and metastasis. Zebrafish (in the embryo-larvae stage) acts as an essential preclinical efficacy-toxicity model for antiangiogenic drug discovery. We aimed to develop a carcinogen-induced model of proangiogenesis in zebrafish embryo-larvae using the carcinogens lindane and benzo[a]pyrene. Zebrafish were randomly selected for mating. Postspawning, healthy embryos were staged, dispensed in reverse-osmosis water in a 12-well plate, and incubated at 28.5 °C, wherein 24 h postfertilization they were exposed to sublethal concentrations of the carcinogens. Three days postexposure, embryos were stained with alkaline phosphatase, and the angiogenic basket was imaged using a bright-field microscope. The number of subintestinal vessels, their length from somite to the basket, and other proangiogenic parameters were measured and analyzed. The effective concentrations causing a 30% increase in subintestinal vessels for benzo[a]pyrene and lindane were 2.69 and 2.24 µM, respectively, thus proving their proangiogenic potency. The carcinogen-induced model of proangiogenesis in zebrafish embryo-larvae can be used as an effective high-throughput screening tool to assess the proangiogenic potential of carcinogenic compounds and to screen antiangiogenic drugs for better therapeutic intervention. Environ Toxicol Chem 2021;40:447-453.© 2020 SETAC.


Subject(s)
Embryo, Nonmammalian , Zebrafish , Angiogenesis Inhibitors/pharmacology , Animals , Carcinogens/toxicity , Larva
2.
Int J Cancer ; 118(4): 821-31, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16152579

ABSTRACT

The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad). Three-dimensional human tissue constructs harboring either H-2Kd-Ecad-expressing or control II-4 cells (pBabe, H-2Kd-EcadDeltaC25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd-Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 gamma2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease.


Subject(s)
Cadherins/physiology , Carcinoma, Squamous Cell/physiopathology , Cell Adhesion , Skin Neoplasms/physiopathology , Animals , Carcinoma, Squamous Cell/genetics , Cell Movement , Cell Proliferation , Disease Progression , Humans , Keratin-1 , Keratins/biosynthesis , Laminin/biosynthesis , Male , Matrix Metalloproteinases/metabolism , Mice , Mice, Nude , Neoplasm Invasiveness , Oligonucleotide Array Sequence Analysis , Phenotype , Prognosis , Skin Neoplasms/genetics , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...