Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Virol ; 87(8): 4176-84, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23365446

ABSTRACT

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, DRV, and ATV susceptibility are influenced by mutations at residue 50 in HIV-1 protease, structural and binding thermodynamics studies were carried out on I50V/L-substituted protease variants in the compensatory mutation A71V background. Reduced affinity to both I50V/A71V and I50L/A71V double mutants is largely due to decreased binding entropy, which is compensated for by enhanced enthalpy for ATV binding to I50V variants and APV binding to I50L variants, leading to hypersusceptibility in these two cases. Analysis of the crystal structures showed that the substitutions at residue 50 affect how APV, DRV, and ATV bind the protease with altered van der Waals interactions and that the selection of I50V versus I50L is greatly influenced by the chemical moieties at the P1 position for APV/DRV and the P2 position for ATV. Thus, the varied inhibitor susceptibilities of I50V/L protease variants are largely a direct consequence of the interdependent changes in protease inhibitor interactions.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral , HIV Protease/chemistry , HIV-1/drug effects , Mutation, Missense , Atazanavir Sulfate , Carbamates/pharmacology , Crystallography, X-Ray , Darunavir , Furans , HIV Protease/genetics , HIV-1/genetics , Humans , Kinetics , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Oligopeptides/pharmacology , Point Mutation , Protein Binding , Protein Conformation , Pyridines/pharmacology , Sulfonamides/pharmacology , Thermodynamics
2.
ACS Chem Biol ; 7(9): 1536-46, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22712830

ABSTRACT

The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5-15 kcal/mol, while losing only 1-3 kcal/mol in total binding free energy for any of six FDA-approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wild-type protease and another drug-resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug-resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design.


Subject(s)
Drug Resistance, Viral , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/chemistry , HIV Protease/genetics , HIV-1/enzymology , Catalytic Domain , Crystallography, X-Ray , Entropy , HIV Protease/metabolism , HIV-1/chemistry , HIV-1/drug effects , HIV-1/genetics , Models, Molecular , Mutation , Protein Binding , Thermodynamics
3.
Plant Physiol Biochem ; 53: 27-32, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22285412

ABSTRACT

A subtilisin-like enzyme, soybean protease C1 (EC 3.4.21.25), initiates the degradation of the ß-conglycinin storage proteins in early seedling growth. Previous kinetic studies revealed a nine-residue (P5-P4') length requirement for substrate peptides to attain optimum cleavage rates. This modeling study used the crystal structure of tomato subtilase (SBT3) as a starting model to explain the length requirement. The study also correlates structure to kinetic studies that elucidated the amino acid preferences of soybean protease C1 for P1, P1' and P4' locations of the cleavage sequence. The interactions of a number of protease C1 residues with P5, P4 and P4' residues of its substrate elucidated by this analysis can explain why the enzyme only hydrolyzes peptide bonds outside of soybean storage protein's core double ß-barrel cupin domains. The findings further correlate with the literature-reported hypothesis for the subtilisin-specific protease-associated (PA) domain to play a critical role. Residues of the SBT3 PA domain also interact with the P2' residue on the substrate's carboxyl side of the scissile bond, while those on protease C1 interact with its substrate's P4' residue. This stands in contrast with the subtilisin BPN' that has no PA domain, and where the enzyme makes stronger interaction with residues on the amino side of the cleaved bond. The variable patterns of interactions between the substrate models and PA domains of tomato SBT3 and soybean protease C1 illustrate a crucial role for the PA domain in molecular recognition of their substrates.


Subject(s)
Amino Acids/metabolism , Antigens, Plant/metabolism , Endopeptidases/metabolism , Globulins/metabolism , Glycine max/enzymology , Plant Proteins/metabolism , Seed Storage Proteins/metabolism , Solanum lycopersicum/enzymology , Soybean Proteins/metabolism , Subtilisins/metabolism , Endopeptidases/chemistry , Kinetics , Models, Molecular , Protein Structure, Tertiary , Substrate Specificity
4.
Viruses ; 2(11): 2509-2535, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21994628

ABSTRACT

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease's function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

5.
J Virol ; 82(13): 6762-6, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18434392

ABSTRACT

The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.


Subject(s)
Genetic Variation , HIV Protease/genetics , HIV-1/enzymology , Models, Molecular , Amino Acid Sequence , Crystallization , HIV Protease/metabolism , Hydrogen Bonding , Molecular Sequence Data , Protein Conformation , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
6.
Proteins ; 70(3): 678-94, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-17729291

ABSTRACT

Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable for thermodynamic studies as well as to explore whether the structural envelope observed for substrate peptides is a function of weak binding. Here, two computational methods-namely, charge optimization and protein design-were applied to identify peptide sequences predicted to have higher binding affinity to the inactivated protease, starting from an RT-RH derived substrate peptide. Of the candidate designed peptides, three were tested for binding with isothermal titration calorimetry, with one, containing a single threonine to valine substitution, measured to have more than a 10-fold improvement over the tightest binding natural substrate. Crystal structures were also obtained for the same three designed peptide complexes; they show good agreement with computational prediction. Thermodynamic studies show that binding is entropically driven, more so for designed affinity enhanced variants than for the starting substrate. Structural studies show strong similarities between natural and tighter-binding designed peptide complexes, which may have implications in understanding the molecular mechanisms of drug resistance in HIV-1 protease.


Subject(s)
Computational Biology/methods , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/metabolism , HIV Protease/chemistry , HIV Protease/genetics , Mutation , Peptides/chemistry , Peptides/metabolism , Amino Acid Substitution , Binding Sites , Crystallography, X-Ray , HIV Protease/metabolism , Structure-Activity Relationship , Thermodynamics , Threonine/genetics , Threonine/metabolism , Valine/genetics , Valine/metabolism
7.
J Virol ; 80(14): 6906-16, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16809296

ABSTRACT

Sequence variability associated with human immunodeficiency virus type 1 (HIV-1) is useful for inferring structural and/or functional constraints at specific residues within the viral protease. Positions that are invariant even in the presence of drug selection define critically important residues for protease function. While the importance of conserved active-site residues is easily understood, the role of other invariant residues is not. This work focuses on invariant Thr80 at the apex of the P1 loop of HIV-1, HIV-2, and simian immunodeficiency virus protease. In a previous study, we postulated, on the basis of a molecular dynamics simulation of the unliganded protease, that Thr80 may play a role in the mobility of the flaps of protease. In the present study, both experimental and computational methods were used to study the role of Thr80 in HIV protease. Three protease variants (T80V, T80N, and T80S) were examined for changes in structure, dynamics, enzymatic activity, affinity for protease inhibitors, and viral infectivity. While all three variants were structurally similar to the wild type, only T80S was functionally similar. Both T80V and T80N had decreased the affinity for saquinavir. T80V significantly decreased the ability of the enzyme to cleave a peptide substrate but maintained infectivity, while T80N abolished both activity and viral infectivity. Additionally, T80N decreased the conformational flexibility of the flap region, as observed by simulations of molecular dynamics. Taken together, these data indicate that HIV-1 protease functions best when residue 80 is a small polar residue and that mutations to other amino acids significantly impair enzyme function, possibly by affecting the flexibility of the flap domain.


Subject(s)
HIV Protease/chemistry , HIV-1/enzymology , Models, Molecular , Tryptophan/chemistry , Amino Acid Substitution , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , HIV Protease/genetics , HIV Protease Inhibitors/chemistry , HIV-1/chemistry , HIV-1/genetics , HIV-1/pathogenicity , Protein Structure, Secondary/genetics , Protein Structure, Tertiary/genetics , Structure-Activity Relationship , Substrate Specificity/genetics , Tryptophan/genetics
8.
Antimicrob Agents Chemother ; 50(4): 1518-21, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16569872

ABSTRACT

In our previous crystallographic studies of human immunodeficiency virus type 1 (HIV-1) protease-substrate complexes, we described a conserved "envelope" that appears to be important for substrate recognition and the selection of drug-resistant mutations. In this study, the complex of HIV-1 protease with the inhibitor RO1 was determined and comparison with the substrate envelope provides a rationale for mutational patterns.


Subject(s)
Dipeptides/chemistry , HIV Protease Inhibitors/chemistry , HIV Protease/chemistry , Crystallography , Dipeptides/pharmacology , Drug Resistance, Viral , HIV Protease Inhibitors/pharmacology , Hydrogen Bonding
9.
J Virol ; 80(7): 3607-16, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16537628

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer flap movements may be asynchronous and that the flap which wraps over the P3 to P1 (P3-P1) residues of the substrate might close first. This is consistent with our hypothesis that the P3-P1 region is crucial for substrate recognition. The intermediate conformation is conserved in both the wild-type and drug-resistant variants. The structural differences between the variants are evident only when the flaps are closed. Thus, a plausible structural model for the adaptability of HIV-1 protease to recognize substrates in the presence of drug-resistant mutations has been proposed.


Subject(s)
Drug Resistance, Viral/genetics , Genetic Variation , HIV Protease/chemistry , HIV Protease/genetics , HIV-1/enzymology , Crystallography, X-Ray , Gene Products, gag/metabolism , HIV Protease/isolation & purification , Humans , Hydrogen Bonding , Models, Molecular , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Protein Conformation , Protein Structure, Secondary , Substrate Specificity , Water/chemistry
10.
J Med Chem ; 48(6): 1965-73, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771440

ABSTRACT

On the basis of structural data gathered during our ongoing HIV-1 protease inhibitors program, from which our clinical candidate TMC114 9 was selected, we have discovered new series of fused heteroaromatic sulfonamides. The further extension into the P2' region was aimed at identifying new classes of compounds with an improved broad spectrum activity and acceptable pharmacokinetic properties. Several of these compounds display an exceptional broad spectrum activity against a panel of highly cross-resistant mutants. Certain members of these series exhibit favorable pharmacokinetic profiles in rat and dog. Crystal structures and molecular modeling were used to rationalize the broad spectrum profile resulting from the extension into the P2' pocket of the HIV-1 protease.


Subject(s)
Benzoxazoles/chemical synthesis , Drug Resistance, Multiple, Viral , HIV Protease Inhibitors/chemical synthesis , HIV-1/drug effects , Sulfonamides/chemical synthesis , Thiazoles/chemical synthesis , Animals , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Binding Sites , Calorimetry , Cell Line , Crystallography, X-Ray , Dogs , Drug Stability , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , In Vitro Techniques , Microsomes, Liver/metabolism , Models, Molecular , Rats , Rats, Wistar , Sulfonamides/chemistry , Sulfonamides/pharmacology , Thermodynamics , Thiazoles/chemistry , Thiazoles/pharmacology
11.
J Med Chem ; 48(6): 1813-22, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771427

ABSTRACT

The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high enthalpy driven affinity of TMC114 for HIV-1 protease. In vitro selection of mutants resistant to TMC114 starting from wild-type virus proved to be extremely difficult; this was not the case for other close analogues. Therefore, the extra H-bond to the backbone in the P2 pocket cannot be the only explanation for the interesting antiviral profile of TMC114. Absorption studies in animals indicated that TMC114 has pharmacokinetic properties comparable to currently approved HIV-1 protease inhibitors.


Subject(s)
HIV Protease Inhibitors/chemical synthesis , HIV Protease/metabolism , HIV-1/drug effects , Sulfonamides/chemical synthesis , Administration, Oral , Animals , Biological Availability , Cell Line , Crystallography, X-Ray , Darunavir , Dogs , Drug Resistance, Multiple, Viral , HIV Protease/genetics , HIV Protease Inhibitors/pharmacokinetics , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , Humans , In Vitro Techniques , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Mutation , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Thermodynamics
12.
J Virol ; 78(22): 12446-54, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15507631

ABSTRACT

Maturation of human immunodeficiency virus (HIV) depends on the processing of Gag and Pol polyproteins by the viral protease, making this enzyme a prime target for anti-HIV therapy. Among the protease substrates, the nucleocapsid-p1 (NC-p1) sequence is the least homologous, and its cleavage is the rate-determining step in viral maturation. In the other substrates of HIV-1 protease, P1 is usually either a hydrophobic or an aromatic residue, and P2 is usually a branched residue. NC-p1, however, contains Asn at P1 and Ala at P2. In response to the V82A drug-resistant protease mutation, the P2 alanine of NC-p1 mutates to valine (AP2V). To provide a structural rationale for HIV-1 protease binding to the NC-p1 cleavage site, we solved the crystal structures of inactive (D25N) WT and V82A HIV-1 proteases in complex with their respective WT and AP2V mutant NC-p1 substrates. Overall, the WT NC-p1 peptide binds HIV-1 protease less optimally than the AP2V mutant, as indicated by the presence of fewer hydrogen bonds and fewer van der Waals contacts. AlaP2 does not fill the P2 pocket completely; PheP1' makes van der Waals interactions with Val82 that are lost with the V82A protease mutation. This loss is compensated by the AP2V mutation, which reorients the peptide to a conformation more similar to that observed in other substrate-protease complexes. Thus, the mutant substrate not only binds the mutant protease more optimally but also reveals the interdependency between the P1' and P2 substrate sites. This structural interdependency results from coevolution of the substrate with the viral protease.


Subject(s)
HIV Protease/chemistry , Mutation , Nucleocapsid Proteins/chemistry , Drug Resistance, Viral , Evolution, Molecular , HIV Protease/genetics , Hydrogen Bonding , Protein Conformation
13.
Chem Biol ; 11(10): 1333-8, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15489160

ABSTRACT

Drug resistance is a major obstacle in modern medicine. However, resistance is rarely considered in drug development and may inadvertently be facilitated, as many designed inhibitors contact residues that can mutate to confer resistance, without significantly impairing function. Contemporary drug design often ignores the detailed atomic basis for function and primarily focuses on disrupting the target's activity, which is necessary but not sufficient for developing a robust drug. In this study, we examine the impact of drug-resistant mutations in HIV-1 protease on substrate recognition and demonstrate that most primary active site mutations do not extensively contact substrates, but are critical to inhibitor binding. We propose a general, structure-based strategy to reduce the probability of drug resistance by designing inhibitors that interact only with those residues that are essential for function.


Subject(s)
Drug Resistance, Viral/genetics , Genetic Predisposition to Disease , HIV Protease/chemical synthesis , HIV Protease/physiology , Binding Sites/genetics , Drug Resistance, Viral/drug effects , HIV Protease/genetics , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use
14.
J Virol ; 78(21): 12012-21, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15479840

ABSTRACT

TMC114, a newly designed human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is extremely potent against both wild-type (wt) and multidrug-resistant (MDR) viruses in vitro as well as in vivo. Although chemically similar to amprenavir (APV), the potency of TMC114 is substantially greater. To examine the basis for this potency, we solved crystal structures of TMC114 complexed with wt HIV-1 protease and TMC114 and APV complexed with an MDR (L63P, V82T, and I84V) protease variant. In addition, we determined the corresponding binding thermodynamics by isothermal titration calorimetry. TMC114 binds approximately 2 orders of magnitude more tightly to the wt enzyme (K(d) = 4.5 x 10(-12) M) than APV (K(d) = 3.9 x 10(-10) M). Our X-ray data (resolution ranging from 2.2 to 1.2 A) reveal strong interactions between the bis-tetrahydrofuranyl urethane moiety of TMC114 and main-chain atoms of D29 and D30. These interactions appear largely responsible for TMC114's very favorable binding enthalpy to the wt protease (-12.1 kcal/mol). However, TMC114 binding to the MDR HIV-1 protease is reduced by a factor of 13.3, whereas the APV binding constant is reduced only by a factor of 5.1. However, even with the reduction in binding affinity to the MDR HIV protease, TMC114 still binds with an affinity that is more than 1.5 orders of magnitude tighter than the first-generation inhibitors. Both APV and TMC114 fit predominantly within the substrate envelope, a property that may be associated with decreased susceptibility to drug-resistant mutations relative to that of first-generation inhibitors. Overall, TMC114's potency against MDR viruses is likely a combination of its extremely high affinity and close fit within the substrate envelope.


Subject(s)
HIV Protease Inhibitors/chemistry , HIV-1/drug effects , Sulfonamides/chemistry , Thermodynamics , Binding Sites , Carbamates , Darunavir , Drug Resistance, Multiple, Viral , Furans , HIV Protease Inhibitors/metabolism , HIV-1/enzymology , Humans , Hydrogen Bonding , Sulfonamides/metabolism
15.
J Virol ; 77(2): 1306-15, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12502847

ABSTRACT

Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more closely with the drugs than with the natural substrate peptides. The V82A mutation compromises these interactions with the drugs while not greatly affecting the substrate interactions, which is consistent with previously published kinetic data. Coupled with our earlier observations, these findings suggest that future inhibitor design may reduce the probability of the appearance of drug-resistant mutations by targeting residues that are essential for substrate recognition.


Subject(s)
HIV Protease Inhibitors/pharmacology , HIV Protease/metabolism , HIV Protease/chemistry , Hydrogen Bonding , Protein Conformation , Structure-Activity Relationship
16.
Structure ; 10(3): 369-81, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12005435

ABSTRACT

The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, yet most internal hydrogen bonds and waters are conserved. However, no substrate side chain hydrogen bond is conserved. Specificity of HIV-1 protease appears to be determined by an asymmetric shape rather than a particular amino acid sequence.


Subject(s)
HIV Protease/chemistry , Peptides/chemistry , Protein Structure, Tertiary , Binding Sites , Crystallography, X-Ray , Gene Products, gag/chemistry , Gene Products, gag/metabolism , HIV Protease/genetics , HIV Protease/metabolism , Humans , Hydrogen Bonding , Ligands , Models, Molecular , Molecular Structure , Peptides/metabolism , Protein Structure, Secondary , Substrate Specificity , Water/chemistry
17.
Protein Sci ; 11(2): 418-29, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11790852

ABSTRACT

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements seen in the second tightest inhibitor complex. This occurs as adaptations in the S1 pocket of one monomer propagate through the dimer and affect the conformation of the S1 loop near P81 of the other monomer. Therefore, structural rearrangements that occur within the protease when it binds to an inhibitor with a single modification must be accounted for in the design of inhibitors with multiple modifications. This consideration is necessary to develop inhibitors that bind sufficiently tightly to drug-resistant variants of HIV-1 protease to potentially become the next generation of therapeutic agents.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Protease Inhibitors/pharmacology , HIV Protease/chemistry , HIV Protease/drug effects , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Binding Sites , Crystallography, X-Ray , Drug Delivery Systems , Drug Resistance, Multiple , Drug Synergism , HIV Protease/metabolism , HIV Protease Inhibitors/chemical synthesis , HIV Protease Inhibitors/chemistry , HIV-1 , Humans , Indinavir/pharmacology , Mutation , Protein Conformation , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...