Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 7: 40054, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071688

ABSTRACT

Epileptiform activity is associated with impairment of brain function even in absence of seizures, as demonstrated by failures in various testing paradigm in presence of hypersynchronous interictal spikes (ISs). Clinical evidence suggests that cognitive deficits might be directly caused by the anomalous activity rather than by its underlying etiology. Indeed, we seek to understand whether ISs interfere with neuronal processing in connected areas not directly participating in the hypersynchronous activity in an acute model of epilepsy. Here we cause focal ISs in the visual cortex of anesthetized mice and we determine that, even if ISs do not invade the opposite hemisphere, the local field potential is subtly disrupted with a modulation of firing probability imposed by the contralateral IS activity. Finally, we find that visual processing is altered depending on the temporal relationship between ISs and stimulus presentation. We conclude that focal ISs interact with normal cortical dynamics far from the epileptic focus, disrupting endogenous oscillatory rhythms and affecting information processing.


Subject(s)
Epilepsy/physiopathology , Nerve Net/physiopathology , Visual Cortex/physiopathology , Visual Perception , Animals , Disease Models, Animal , Mice
3.
Nanotechnology ; 27(1): 015704, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26597894

ABSTRACT

Quantum dots (QDs) and polymeric nanoparticles (NPs) are considered good binomials for the development of multifunctional nanomedicines for multimodal imaging. Fluorescent imaging of QDs can monitor the behavior of QD-labeled NPs in both cells and animals with high temporal and spatial resolutions. The comprehension of polymer interaction with the metallic QD surface must be considered to achieve a complete chemicophysical characterization of these systems and to describe the QD optical properties to be used for their unequivocal identification in the tissue. In this study, by comparing two different synthetic procedures to obtain polymeric nanoparticles labeled with QDs, we investigated whether their optical properties may change according to the formulation methods, as a consequence of the different polymeric environments. Atomic force microscopy, transmission electron microscopy, confocal and fluorescence lifetime imaging microscopy characterization demonstrated that NPs modified with QDs after the formulation process (post-NPs-QDs) conserved the photophysical features of the QD probe. In contrast, by using a polymer modified with QDs to formulate NPs (pre-NPs-QDs), a significant quenching of QD fluorescence and a blueshift in its emission spectra were observed. Our results suggest that the packaging of QDs into the polymeric matrix causes a modification of the QD optical properties: these effects must be characterized in depth and carefully considered when developing nanosystems for imaging and biological applications.


Subject(s)
Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Quantum Dots/chemistry , Animals , Microscopy, Fluorescence , Nanomedicine , Nanoparticles/ultrastructure , Optical Imaging/methods , Particle Size , Polyethylene Glycols/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Quantum Dots/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...