Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Nat Commun ; 15(1): 5353, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918403

ABSTRACT

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.


Subject(s)
Neurons , Nociceptin , Opioid Peptides , Receptors, Opioid , Animals , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , Receptors, Opioid/genetics , Neurons/metabolism , Humans , Mice , Male , Ventral Tegmental Area/metabolism , Nociceptin Receptor , HEK293 Cells , Brain/metabolism , Mice, Inbred C57BL , Ligands , Biosensing Techniques/methods
2.
Front Immunol ; 15: 1401800, 2024.
Article in English | MEDLINE | ID: mdl-38933275

ABSTRACT

Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.


Subject(s)
Air Pollution , Alzheimer Disease , Inflammation , Leptin , Obesity , Particulate Matter , Animals , Humans , Air Pollutants/adverse effects , Air Pollution/adverse effects , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Inflammation/metabolism , Inflammation/etiology , Leptin/metabolism , Obesity/metabolism , Obesity/etiology , Particulate Matter/adverse effects , Signal Transduction , Toll-Like Receptor 4/metabolism
3.
Mol Cell Endocrinol ; 589: 112232, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38604549

ABSTRACT

BACKGROUND: The central nucleus of the amygdala (CeA) is part of the dopaminergic reward system and controls energy balance. Recently, a cluster of neurons was identified as responsive to the orexigenic effect of ghrelin and fasting. However, the signaling pathway by which ghrelin and fasting induce feeding is unknown. AMP-activated protein kinase (AMPK) is a cellular energy sensor, and its Thr172 phosphorylation (AMPKThr172) in the mediobasal hypothalamus regulates food intake. However, whether the expression and activation of AMPK in CeA could be one of the intracellular signaling activated in response to ghrelin and fasting eliciting food intake is unknown. AIM: To evaluate the activation of AMPK into CeA in response to ghrelin, fasting, and 2-deoxy-D-glucose (2DG) and whether feeding accompanied these changes. In addition, to investigate whether the inhibition of AMPK into CeA could decrease food intake. METHODS: On a chow diet, eight-week-old Wistar male rats were stereotaxically implanted with a cannula in the CeA to inject several modulators of AMPKα1/2Thr172 phosphorylation, and we performed physiological and molecular assays. KEY FINDINGS: Fasting increased, and refeeding reduced AMPKThr172 in the CeA. Intra-CeA glucose injection decreased feeding, whereas injection of 2DG, a glucoprivation inductor, in the CeA, increased food intake and blood glucose, despite faint increases in AMPKThr172. Intra-CeA ghrelin injection increased food intake and AMPKThr172. To further confirm the role of AMPK in the CeA, chronic injection of Melanotan II (MTII) in CeA reduced body mass and food intake over seven days together with a slight decrease in AMPKThr172. SIGNIFICANCE: Our findings identified that AMPK might be part of the signaling machinery in the CeA, which responds to nutrients and hormones contributing to feeding control. The results can contribute to understanding the pathophysiological mechanisms of altered feeding behavior/consumption, such as binge eating of caloric-dense, palatable food.


Subject(s)
AMP-Activated Protein Kinases , Central Amygdaloid Nucleus , Eating , Fasting , Ghrelin , Rats, Wistar , Animals , Male , Ghrelin/metabolism , Ghrelin/pharmacology , AMP-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Central Amygdaloid Nucleus/metabolism , Eating/drug effects , Eating/physiology , Rats , Signal Transduction/drug effects , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Feeding Behavior/drug effects , Glucose/metabolism
4.
Front Endocrinol (Lausanne) ; 14: 1172835, 2023.
Article in English | MEDLINE | ID: mdl-37635967

ABSTRACT

Introduction: Cdc2-like kinase (CLK2) is a member of CLK kinases expressed in hypothalamic neurons and is activated in response to refeeding, leptin, or insulin. Diet-induced obesity and leptin receptor-deficient db/db mice lack CLK2 signal in the hypothalamic neurons. The neurotransmiter gamma-aminobutyric acid (GABA) is among the most prevalent in the central nervous system (CNS), particularly in the hypothalamus. Given the abundance of GABA-expressing neurons and their potential influence on regulating energy and behavioral homeostasis, we aimed to explore whether the deletion of CLK2 in GABAergic neurons alters energy homeostasis and behavioral and cognitive functions in both genders of mice lacking CLK2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) on chow diet. Methods: We generated mice lacking Clk2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) by mating Clk2loxP/loxP mice with Vgat-IRES-Cre transgenic mice and employed behavior, and physiological tests, and molecular approaches to investigate energy metabolism and behavior phenotype of both genders. Results and discussion: We showed that deletion of CLK2 in GABAergic neurons increased adiposity and food intake in females. The mechanisms behind these effects were likely due, at least in part, to hypothalamic insulin resistance and upregulation of hypothalamic Npy and Agrp expression. Besides normal insulin and pyruvate sensitivity, Vgat-Cre; Clk2loxP/loxP females were glucose intolerant. Male Vgat-Cre; Clk2loxP/loxP mice showed an increased energy expenditure (EE). Risen EE may account for avoiding weight and fat mass gain in male Vgat-Cre; Clk2loxP/loxP mice. Vgat-Cre; Clk2loxP/loxP mice had no alteration in cognition or memory functions in both genders. Interestingly, deleting CLK2 in GABAergic neurons changed anxiety-like behavior only in females, not males. These findings suggest that CLK2 in GABAergic neurons is critical in regulating energy balance and anxiety-like behavior in a gender-specific fashion and could be a molecular therapeutic target for combating obesity associated with psychological disorders in females.


Subject(s)
Anxiety , Energy Metabolism , GABAergic Neurons , Animals , Female , Male , Mice , Anxiety/genetics , Energy Metabolism/genetics , Insulins , Obesity/genetics
5.
Toxicol Rep ; 11: 10-22, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37383489

ABSTRACT

Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.

6.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37292957

ABSTRACT

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fiber photometry enabled a direct recording of binding by N/OFQ receptor ligands, as well as the detection of natural or chemogenetically-evoked endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA). In summary, we show that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely-behaving animals.

7.
Front Endocrinol (Lausanne) ; 14: 1069243, 2023.
Article in English | MEDLINE | ID: mdl-37082122

ABSTRACT

Introduction: The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods: Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results: PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion: Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.


Subject(s)
Air Pollution , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Humans , Mice , Animals , Female , Male , Maternal Exposure/adverse effects , Leptin/metabolism , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Particulate Matter/adverse effects , Body Weight , Air Pollution/adverse effects , Energy Metabolism
8.
Proc Natl Acad Sci U S A ; 120(4): e2211933120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656866

ABSTRACT

Metformin is the most prescribed drug for DM2, but its site and mechanism of action are still not well established. Here, we investigated the effects of metformin on basolateral intestinal glucose uptake (BIGU), and its consequences on hepatic glucose production (HGP). In diabetic patients and mice, the primary site of metformin action was the gut, increasing BIGU, evaluated through PET-CT. In mice and CaCo2 cells, this increase in BIGU resulted from an increase in GLUT1 and GLUT2, secondary to ATF4 and AMPK. In hyperglycemia, metformin increased the lactate (reducing pH and bicarbonate in portal vein) and acetate production in the gut, modulating liver pyruvate carboxylase, MPC1/2, and FBP1, establishing a gut-liver crosstalk that reduces HGP. In normoglycemia, metformin-induced increases in BIGU is accompanied by hypoglycemia in the portal vein, generating a counter-regulatory mechanism that avoids reductions or even increases HGP. In summary, metformin increases BIGU and through gut-liver crosstalk influences HGP.


Subject(s)
Gastrointestinal Tract , Glucose , Liver , Metformin , Animals , Humans , Mice , Caco-2 Cells , Diabetes Mellitus, Type 2 , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Liver/metabolism , Metformin/pharmacology , Positron Emission Tomography Computed Tomography , Gastrointestinal Tract/metabolism
9.
Front Physiol ; 13: 956116, 2022.
Article in English | MEDLINE | ID: mdl-36452038

ABSTRACT

Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake. Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism. Methods: We applied a combination of genetic, pharmacological, and molecular approaches. Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism. Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.

10.
Sci Adv ; 8(30): eabm7355, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35905178

ABSTRACT

Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.


Subject(s)
AMP-Activated Protein Kinases , Interleukin-6 , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Fatty Acids/metabolism , Humans , Hypothalamus/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Muscle, Skeletal/metabolism , Oxidation-Reduction
11.
Clin Exp Pharmacol Physiol ; 49(10): 1072-1081, 2022 10.
Article in English | MEDLINE | ID: mdl-35690890

ABSTRACT

Obesity is associated with low-grade inflammation and disturbances in hepatic metabolism. This study aimed to investigate the effects of resistance exercise on inflammatory signalling related to IκB kinase (IKK) ɛ protein (IKKɛ) and on hepatic fat accumulation in obese mice. Male Swiss mice were distributed into three groups: control (CTL) fed with standard chow; obese (OB) mice induced by a high-fat diet (HFD); obese exercised (OB + RE) mice fed with HFD and submitted to a resistance exercise training. The resistance exercise training protocol consisted of 20 sets/3 ladder climbs for 8 weeks, three times/week on alternate days. The training overload was equivalent to 70% of the maximum load supported by the rodent. Assays were performed to evaluate weight gain, hepatic fat content, fasting glucose, insulin sensitivity, IKKɛ phosphorylation and proteins related to insulin signalling and lipogenesis in the liver. Mice that received the high-fat diet showed greater adiposity, impaired insulin sensitivity, increased fasting glucose and increased hepatic fat accumulation. These results were accompanied by an increase in IKKɛ phosphorylation and lipogenesis-related proteins such as cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) in the liver of obese mice. In contrast, exercised mice showed lower body weight and adiposity evolution throughout the experiment. In addition, resistance exercise suppressed the effects of the high-fat diet by reducing IKKɛ phosphorylation and hepatic fat content. In conclusion, resistance exercise training improves hepatic fat metabolism and glycaemic homeostasis, which are, at least in part, linked to the anti-inflammatory effect of reduced IKKɛ phosphorylation in the liver of obese mice.


Subject(s)
Adiposity , I-kappa B Kinase , Liver , Obesity , Resistance Training , Animals , Diet, High-Fat/adverse effects , Glucose/metabolism , Humans , I-kappa B Kinase/metabolism , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Phosphorylation
12.
Sci Rep ; 11(1): 3813, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33589652

ABSTRACT

The maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPRmt) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPRmt in hypothalamic cells are unclear. Combining the transcriptomic analyses from BXD mice database and in vivo experiments, we demonstrated that physical training alters the mitochondrial proteostasis in the hypothalamus of C57BL/6J mice. This physical training elicited the mitonuclear protein imbalance, increasing the mtCO-1/Atp5a ratio, which was accompanied by high levels of UPRmt markers in the hypothalamus. Also, physical training increased the maximum mitochondrial respiratory capacity in the brain. Interestingly, the transcriptomic analysis across several strains of the isogenic BXD mice revealed that hypothalamic mitochondrial DNA-encoded genes were negatively correlated with body weight and several genes related to the orexigenic response. As expected, physical training reduced body weight and food intake. Interestingly, we found an abundance of mt-CO1, a mitochondrial DNA-encoded protein, in NPY-producing neurons in the lateral hypothalamus nucleus of exercised mice. Collectively, our data demonstrated that physical training altered the mitochondrial proteostasis and induced the mitonuclear protein imbalance and UPRmt in hypothalamic cells.


Subject(s)
Energy Metabolism/genetics , Mitochondria/genetics , Proteostasis/genetics , Unfolded Protein Response/genetics , Animals , Humans , Hypothalamus/metabolism , Mice , Mitochondria/metabolism , Neurons/metabolism , Physical Conditioning, Animal/physiology
13.
Sci Rep ; 10(1): 10160, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576879

ABSTRACT

A previous study demonstrated that a high-fat diet (HFD), administered for one-three-days, induces hypothalamic inflammation before obesity's established, and the long term affects leptin signaling/action due to inflammation. We investigate whether exposure to particulate matter of a diameter of ≤2.5 µm (PM2.5) in mice fed with a chow diet leads to similar metabolic effects caused by high-fat feeding. Compared to the filtered air group (FA), one-day-exposure-PM2.5 did not affect adiposity. However, five-days-exposure-PM2.5 increased hypothalamic microglia density, toll-like-receptor-4 (Tlr4), and the inhibitor-NF-kappa-B-kinase-epsilon (Ikbke) expression. Concurrently, fat mass, food intake (FI), and ucp1 expression in brown adipose tissue were also increased. Besides, decreased hypothalamic STAT3-phosphorylation and Pomc expression were found after twelve-weeks-exposure-PM2.5. These were accompanied by increased FI and lower energy expenditure (EE), leading to obesity, along with increased leptin and insulin levels and HOMA. Mechanistically, the deletion of Tlr4 or knockdown of the Ikbke gene in the hypothalamus was sufficient to reverse the metabolic outcomes of twelve-weeks-exposure-PM2.5. These data demonstrated that short-term exposure-PM2.5 increases hypothalamic inflammation, similar to a HFD. Long-term exposure-PM2.5 is even worse, leading to leptin resistance, hyperphagia, and decreased EE. These effects are most likely due to chronic hypothalamic inflammation, which is regulated by Tlr4 and Ikbke signaling.


Subject(s)
Air Pollution/adverse effects , Hypothalamus/metabolism , Hypothalamus/pathology , Inflammation/etiology , Leptin/metabolism , Microglia/pathology , Obesity/etiology , Particulate Matter/adverse effects , Adipocytes, Brown/metabolism , Animals , Energy Metabolism/drug effects , Gene Expression , Hyperphagia/etiology , Hypothalamus/drug effects , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inflammation/genetics , Mice, Transgenic , Microglia/drug effects , Obesity/metabolism , Signal Transduction/drug effects , Time Factors , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
14.
J Endocrinol ; 244(1): 71-82, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31557728

ABSTRACT

The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.


Subject(s)
Feeding Behavior/drug effects , Glucose/metabolism , Protein Isoforms/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/pharmacology , Ribosomal Protein S6 Kinases/pharmacology , Agouti-Related Protein/metabolism , Animals , Eating/genetics , Hypothalamus/metabolism , Mice , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism
15.
Life Sci ; 234: 116793, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31465735

ABSTRACT

INTRODUCTION: Environmental factors have a key role in the control of gut microbiota and obesity. TLR2 knockout (TLR2-/-) mice in some housing conditions are protected from diet-induced insulin resistance. However, in our housing conditions these animals are not protected from diet-induced insulin-resistance. AIM: The aim of the present study was to investigate the influence of our animal housing conditions on the gut microbiota, glucose tolerance and insulin sensitivity in TLR2-/- mice. MATERIAL AND METHODS: The microbiota was investigated by metagenomics, associated with hyperinsulinemic euglycemic clamp and GTT associated with insulin signaling through immunoblotting. RESULTS: The results showed that TLR2-/- mice in our housing conditions presented a phenotype of metabolic syndrome characterized by insulin resistance, glucose intolerance and increase in body weight. This phenotype was associated with differences in microbiota in TLR2-/- mice that showed a decrease in the Proteobacteria and Bacteroidetes phyla and an increase in the Firmicutesphylum, associated with and in increase in the Oscillospira and Ruminococcus genera. Furthermore there is also an increase in circulating LPS and subclinical inflammation in TLR2-/-. The molecular mechanism that account for insulin resistance was an activation of TLR4, associated with ER stress and JNK activation. The phenotype and metabolic behavior was reversed by antibiotic treatment and reproduced in WT mice by microbiota transplantation. CONCLUSIONS: Our data show, for the first time, that the intestinal microbiota can induce insulin resistance and obesity in an animal model that is genetically protected from these processes.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Insulin/metabolism , Toll-Like Receptor 2/genetics , Animals , Endoplasmic Reticulum Stress , Gene Deletion , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Glucose Intolerance/microbiology , Housing, Animal , Insulin Resistance/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 2/metabolism
16.
FASEB J ; 33(11): 11909-11924, 2019 11.
Article in English | MEDLINE | ID: mdl-31366244

ABSTRACT

Growth hormone (GH) is secreted during hypoglycemia, and GH-responsive neurons are found in brain areas containing glucose-sensing neurons that regulate the counter-regulatory response (CRR). However, whether GH modulates the CRR to hypoglycemia via specific neuronal populations is currently unknown. Mice carrying ablation of GH receptor (GHR) either in leptin receptor (LepR)- or steroidogenic factor-1 (SF1)-expressing cells were studied. We also investigated the importance of signal transducer and activator of transcription 5 (STAT5) signaling in SF1 cells for the CRR. GHR ablation in LepR cells led to impaired capacity to recover from insulin-induced hypoglycemia and to a blunted CRR caused by 2-deoxy-d-glucose (2DG) administration. GHR inactivation in SF1 cells, which include ventromedial hypothalamic neurons, also attenuated the CRR. The reduced CRR was prevented by parasympathetic blockers. Additionally, infusion of 2DG produced an abnormal hyperactivity of parasympathetic preganglionic neurons, whereas the 2DG-induced activation of anterior bed nucleus of the stria terminalis neurons was reduced in mice without GHR in SF1 cells. Mice carrying ablation of Stat5a/b genes in SF1 cells showed no defects in the CRR. In summary, GHR expression in SF1 cells is required for a normal CRR, and these effects are largely independent of STAT5 pathway.-Furigo, I. C., de Souza, G. O., Teixeira, P. D. S., Guadagnini, D., Frazão, R., List, E. O., Kopchick, J. J., Prada, P. O., Donato, J., Jr. Growth hormone enhances the recovery of hypoglycemia via ventromedial hypothalamic neurons.


Subject(s)
Growth Hormone/pharmacology , Hypoglycemia/drug therapy , Hypothalamus/drug effects , Neurons/drug effects , Recovery of Function/drug effects , Animals , Deoxyglucose/pharmacology , Hypoglycemia/physiopathology , Hypothalamus/cytology , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neurons/physiology , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism
17.
Nutrients ; 11(3)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30832230

ABSTRACT

In the present study, we aimed to investigate whether chronic oral glutamine (Gln) supplementation may alter metabolic parameters and the inflammatory profile in overweight and obese humans as well as whether Gln may modulate molecular pathways in key tissues linked to the insulin action in rats. Thirty-nine overweight/obese volunteers received 30 g of Gln or alanine (Ala-control) for 14 days. Body weight (BW), waist circumference (WC), hormones, and pro-inflammatory markers were evaluated. To investigate molecular mechanisms, Gln or Ala was given to Wistar rats on a high-fat diet (HFD), and metabolic parameters, euglycemic hyperinsulinemic clamp with tracers, and Western blot were done. Gln reduced WC and serum lipopolysaccharide (LPS) in overweight volunteers. In the obese group, Gln diminished WC and serum insulin. There was a positive correlation between the reduction on WC and LPS. In rats on HFD, Gln reduced adiposity, improved insulin action and signaling, and reversed both defects in glucose metabolism in the liver and muscle. Gln supplementation increased muscle glucose uptake and reversed the increased hepatic glucose production, in parallel with a reduced glucose uptake in adipose tissue. This insulin resistance in AT was accompanied by enhanced IRS1 O-linked-glycosamine association in this tissue, but not in the liver and muscle. These data suggest that Gln supplementation leads to insulin resistance specifically in adipose tissue via the hexosamine pathway and reduces adipose mass, which is associated with improvement in the systemic insulin action. Thus, further investigation with Gln supplementation should be performed for longer periods in humans before prescribing as a beneficial therapeutic approach for individuals who are overweight and obese.


Subject(s)
Dietary Supplements , Glutamine/administration & dosage , Obesity/therapy , Overweight/therapy , Adult , Animals , Biomarkers/metabolism , Body Weight/physiology , Diet, High-Fat/adverse effects , Double-Blind Method , Female , Glucose Clamp Technique , Humans , Inflammation Mediators/metabolism , Insulin Resistance/physiology , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Obesity/etiology , Obesity/physiopathology , Overweight/etiology , Overweight/physiopathology , Rats , Rats, Wistar , Waist Circumference/physiology
18.
Endocrinology ; 160(1): 193-204, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30462197

ABSTRACT

Previous studies have shown that bromocriptine mesylate (Bromo) lowers blood glucose levels in adults with type 2 diabetes mellitus; however, the mechanism of action of the antidiabetic effects of Bromo is unclear. As a dopamine receptor agonist, Bromo can alter brain dopamine activity affecting glucose control, but it also suppresses prolactin (Prl) secretion, and Prl levels modulate glucose homeostasis. Thus, the objective of the current study was to investigate whether Bromo improves insulin sensitivity via inhibition of Prl secretion. Male and female ob/ob animals (a mouse model of obesity and insulin resistance) were treated with Bromo and/or Prl. Bromo-treated ob/ob mice exhibited lower serum Prl concentration, improved glucose and insulin tolerance, and increased insulin sensitivity in the liver and skeletal muscle compared with vehicle-treated mice. Prl replacement in Bromo-treated mice normalized serum Prl concentration without inducing hyperprolactinemia. Importantly, Prl replacement partially reversed the improvements in glucose homeostasis caused by Bromo treatment. The effects of the Prl receptor antagonist G129R-hPrl on glucose homeostasis were also investigated. We found that central G129R-hPrl infusion increased insulin tolerance of male ob/ob mice. In summary, our findings indicate that part of Bromo effects on glucose homeostasis are associated with decrease in serum Prl levels. Because G129R-hPrl treatment also improved the insulin sensitivity of ob/ob mice, pharmacological compounds that inhibit Prl signaling may represent a promising therapeutic approach to control blood glucose levels in individuals with insulin resistance.


Subject(s)
Bromocriptine/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Prolactin/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Obese , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism
19.
J Nutr Biochem ; 50: 16-25, 2017 12.
Article in English | MEDLINE | ID: mdl-28968517

ABSTRACT

Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Dysbiosis/prevention & control , Gastrointestinal Microbiome , Insulin Resistance , Intestinal Mucosa/physiopathology , Obesity/diet therapy , Probiotics/therapeutic use , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Appetite Regulation , Bifidobacterium bifidum/classification , Bifidobacterium bifidum/growth & development , Bifidobacterium bifidum/immunology , Bifidobacterium bifidum/isolation & purification , Cell Membrane Permeability , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/microbiology , Diet, High-Fat/adverse effects , Dysbiosis/etiology , Dysbiosis/immunology , Dysbiosis/microbiology , Feces/microbiology , Gastrointestinal Microbiome/immunology , Glucose Clamp Technique , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lactobacillus acidophilus/classification , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/immunology , Lactobacillus acidophilus/isolation & purification , Lacticaseibacillus rhamnosus/classification , Lacticaseibacillus rhamnosus/growth & development , Lacticaseibacillus rhamnosus/immunology , Lacticaseibacillus rhamnosus/isolation & purification , Liver/immunology , Liver/metabolism , Liver/pathology , Male , Mice , Molecular Typing , Obesity/metabolism , Obesity/pathology , Obesity/physiopathology , Random Allocation
20.
Clin Epigenetics ; 9: 110, 2017.
Article in English | MEDLINE | ID: mdl-29046732

ABSTRACT

BACKGROUND: Studies of genes that play an important role in the development of obesity are needed, especially studies focusing on genes that regulate food intake and affect nutrient metabolism. For example, the beta-3 adrenergic receptor (ADRB3) responds to noradrenaline and mediates lipolysis in adipocytes. METHODS: This was a controlled intervention study involving 40 overweight and obese adult women in which food intake, anthropometric measurements, biochemical analyses, and methylation levels of the ADRB3 gene were evaluated before and after intervention. The individuals were randomized into four groups: group 1 (G1) received 300 g of vegetables and legumes containing on average 191 µg/day of folate and 1 hazelnut oil capsule; group 2 (G2) received 300 g of vegetables and legumes containing on average 191 µg/day of folate and 1 placebo capsule; group 3 (G3) received 300 g of vegetables and legumes containing on average 90 µg/day of folate and 1 hazelnut oil capsule; and individuals in group 4 (G4) were only followed-up and maintained their regular dietary habits. Statistical analysis was performed using analysis of variance (ANOVA), Student's t test and simple regression, using STATA 13 software. RESULTS: In the total sample, after the intervention, the women classified as overweight and obese did not present weight loss, and there was a reduction in the methylation levels of the ADRB3 gene and malondialdehyde, as well as an increase in high-density lipoprotein cholesterol and total antioxidant capacity. CONCLUSIONS: The beneficial effect of the intake of a hazelnut capsule on the methylation levels of the ADRB3 gene was demonstrated for the first time. TRIAL REGISTRATION: ClinicalTrials.gov, NCT 02846025.


Subject(s)
DNA Methylation/drug effects , Folic Acid/administration & dosage , Obesity/diet therapy , Overweight/diet therapy , Plant Oils/administration & dosage , Receptors, Adrenergic, beta-3/genetics , Adult , Corylus/chemistry , Double-Blind Method , Epigenesis, Genetic/drug effects , Female , Folic Acid/pharmacology , Humans , Lipids/analysis , Middle Aged , Obesity/genetics , Overweight/genetics , Oxidative Stress/drug effects , Plant Oils/pharmacology , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...