Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20242024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965703

ABSTRACT

Accurate classification of genetic variants is crucial for clinical decision-making in hereditary cancer. In Spain, genetic diagnostic laboratories have traditionally approached this task independently due to the lack of a dedicated resource. Here we present SpadaHC, a web-based database for sharing variants in hereditary cancer genes in the Spanish population. SpadaHC is implemented using a three-tier architecture consisting of a relational database, a web tool and a bioinformatics pipeline. Contributing laboratories can share variant classifications and variants from individuals in Variant Calling Format (VCF) format. The platform supports open and restricted access, flexible dataset submissions, automatic pseudo-anonymization, VCF quality control, variant normalization and liftover between genome builds. Users can flexibly explore and search data, receive automatic discrepancy notifications and access SpadaHC population frequencies based on many criteria. In February 2024, SpadaHC included 18 laboratory members, storing 1.17 million variants from 4306 patients and 16 343 laboratory classifications. In the first analysis of the shared data, we identified 84 genetic variants with clinically relevant discrepancies in their classifications and addressed them through a three-phase resolution strategy. This work highlights the importance of data sharing to promote consistency in variant classifications among laboratories, so patients and family members can benefit from more accurate clinical management. Database URL: https://spadahc.ciberisciii.es/.


Subject(s)
Databases, Genetic , Humans , Spain , Genetic Variation , Neoplasms/genetics , Genes, Neoplasm , Genetic Predisposition to Disease
2.
Front Cell Dev Biol ; 8: 660, 2020.
Article in English | MEDLINE | ID: mdl-32850799

ABSTRACT

Defects in mitochondrial function lead to severe neuromuscular orphan pathologies known as mitochondrial disease. Among them, Leigh Syndrome is the most common pediatric presentation, characterized by symmetrical brain lesions, hypotonia, motor and respiratory deficits, and premature death. Mitochondrial diseases are characterized by a marked anatomical and cellular specificity. However, the molecular determinants for this susceptibility are currently unknown, hindering the efforts to find an effective treatment. Due to the complex crosstalk between mitochondria and their supporting cell, strategies to assess the underlying alterations in affected cell types in the context of mitochondrial dysfunction are critical. Here, we developed a novel virus-based tool, the AAV-mitoTag viral vector, to isolate mitochondria from genetically defined cell types. Expression of the AAV-mitoTag in the glutamatergic vestibular neurons of a mouse model of Leigh Syndrome lacking the complex I subunit Ndufs4 allowed us to assess the proteome and acetylome of a subset of susceptible neurons in a well characterized model recapitulating the human disease. Our results show a marked reduction of complex I N-module subunit abundance and an increase in the levels of the assembly factor NDUFA2. Transiently associated non-mitochondrial proteins such as PKCδ, and the complement subcomponent C1Q were also increased in Ndufs4-deficient mitochondria. Furthermore, lack of Ndufs4 induced ATP synthase complex and pyruvate dehydrogenase (PDH) subunit hyperacetylation, leading to decreased PDH activity. We provide novel insight on the pathways involved in mitochondrial disease, which could underlie potential therapeutic approaches for these pathologies.

3.
Bio Protoc ; 10(17): e3741, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-33659401

ABSTRACT

Respiratory dysfunction is among the main cause of severe and fatal pathologies worldwide. The use of effective experimental models and methodologies for the study of the pulmonary pathophysiology is necessary to prevent, control and cure these diseases. Plethysmography, a technique for the assessment of lung function, has been widely applied in mice for the characterization of respiratory physiology. However, classical plethysmography methods present technical limitations such as the use of anesthesia and animal immobilization. Whole-body plethysmography (WBP) avoids these issues providing a non-invasive approach for the assessment of the respiratory function in conscious animals. WBP relies on the recording of pressure changes that are produced by the spontaneous breathing activity of an animal placed inside an airtight chamber. During normal respiration, pressure variation is directly proportional to the respiratory pattern of the animal allowing the measurement of the respiratory rate and tidal volume. These parameters are commonly used to evaluate pulmonary function in different physiological and disease models. In contrast to classical plethysmography methods, WBP technique allows reproducible serial measurements as it avoids animal restraint or the use of anesthesia. These key features rend WBP a suitable approach for longitudinal studies allowing the assessment of progressive respiratory alterations in physiological and pathological conditions. This protocol describes the procedures for the measurement of the breathing patterns in mice using the WBP method, the data analysis and results interpretation.

4.
Elife ; 82019 08 12.
Article in English | MEDLINE | ID: mdl-31403401

ABSTRACT

Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.


Subject(s)
Leigh Disease/pathology , Leigh Disease/physiopathology , Mitochondrial Diseases/pathology , Mitochondrial Diseases/physiopathology , Neurons/pathology , Animals , Basal Ganglia/pathology , Brain Stem/pathology , Disease Models, Animal , Disease Progression , Electron Transport Complex I/deficiency , Mice , Phenotype
5.
Neurosci Lett ; 706: 164-168, 2019 07 27.
Article in English | MEDLINE | ID: mdl-31116970

ABSTRACT

Mutations in the glucocerebrosidase (GCase) gene (GBA) and GCase deficiency are major risk factors for Lewy body diseases. Decreased GCase activity enhances alpha-synuclein aggregation and disease development. Lysosomal integral membrane protein type 2, encoded by SCARB2, binds GCase targeting it to lysosomes and transcription factor EB (Tfeb) regulates lysosomal proteostasis. Our aim was to find out if GCase deficiency in Lewy body diseases is accompanied by SCARB2 and TFEB deregulation at the transcriptional level involving alternative splicing as well. Relative mRNA expression of two SCARB2 and two TFEB transcripts was studied by real-time PCR in post-mortem brain samples of cases with pure Lewy body pathology (LBP), cases with concomitant LBP and Alzheimer disease-like pathology, and controls. TFEB expression was increased in the temporal cortex and caudate nucleus of LBP cases, and SCARB2 was differentially expressed. Female-gender associated overexpression of all transcripts was found in the caudate nucleus, and disease duration associated TFEB expression changes in the temporal cortex. SCARB2 and TFEB expression correlated negatively with GBA mRNA expression in the temporal cortex. Our findings show disease-specific deregulation of TFEB and SCARB2 expression affecting alternative promoter usage and alternative splicing in Lewy body diseases.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain/metabolism , Lewy Body Disease/metabolism , Lysosomal Membrane Proteins/metabolism , Receptors, Scavenger/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Brain/pathology , Female , Humans , Lewy Body Disease/genetics , Lewy Body Disease/pathology , Lysosomal Membrane Proteins/genetics , Male , Middle Aged , Receptors, Scavenger/genetics , Sex Factors , Transcriptional Activation , Up-Regulation
6.
Mov Disord ; 31(7): 1066-70, 2016 07.
Article in English | MEDLINE | ID: mdl-27027900

ABSTRACT

BACKGROUND: Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are Lewy body diseases characterized by similar pathological features. Several studies have shown a relation between alterations in the glucocerebrosidase gene (GBA) and the development of LB diseases. Here, we explored the role of GBA mutations in Spanish DLB patients. METHODS: GBA mRNA sequences were analyzed in a neuropathological (50 DLB, 43 PD, and 34 control brains) and in a clinical cohort (47 DLB patients and 131 unaffected individuals). RESULTS: Sixteen GBA mutation carriers were identified, 5 of which were brains with pure DLB. The most common mutation, E326K, was strongly associated with pure DLB and PD with dementia. GBA mutations were overrepresented in men and associated with earlier DLB onset. CONCLUSIONS: GBA mutations are also an important risk factor for DLB development in the Spanish population, are associated with earlier disease onset, and are more prevalent in men. © 2015 International Parkinson and Movement Disorder Society.


Subject(s)
Glucosylceramidase/genetics , Lewy Body Disease/genetics , Age of Onset , Aged , Aged, 80 and over , Female , Heterozygote , Humans , Male , Middle Aged , Sex Factors , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...