Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 17(5): 3063-77, 2009 Mar 02.
Article in English | MEDLINE | ID: mdl-19259143

ABSTRACT

The optimal structural parameters for an antireflective structure in high resistive float zone silicon are deduced for a rectangular and a hexagonal structure. For this the dependence of the effective index from the filling factor was calculated for both grating types. The structures were manufactured by the Bosch-process. The required structural parameters for a continuous profile require an adaption of the fabrication process. Challenges are the depth and the slight positive slope of the structures. Starting point for the realization of the antireflective structures was the manufacturing of deep binary gratings. A rectangular structure and a hexagonal structure with period 50 mum and depth 500 mum were realized. Measurements with a THz time domain spectroscopy setup show an increase of the electric field amplitude of 15.2% for the rectangular grating and 21.76% for the hexagonal grating. The spectral analysis shows that the bandwidth of the hexagonal grating reaches from 0.1 to 2 THz.

2.
Appl Opt ; 47(27): 4994-5006, 2008 Sep 20.
Article in English | MEDLINE | ID: mdl-18806862

ABSTRACT

A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.

3.
Opt Express ; 15(3): 779-89, 2007 Feb 05.
Article in English | MEDLINE | ID: mdl-19532301

ABSTRACT

The requirements for a broadband antireflective structure in the THz spectral region are derived. Optimized structural parameters for a surface-relief grating adapted to the spectrum of an intended THz pulse are deduced. The effect of a structure fabricated into Topas((R)) by a single-point diamond-turning process is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...