Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 3307, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607346

ABSTRACT

Dark-field imaging is a scattering-based X-ray imaging method that can be performed with laboratory X-ray tubes. The possibility to obtain information about unresolvable structures has already seen a lot of interest for both medical and material science applications. Unlike conventional X-ray attenuation, orientation dependent changes of the dark-field signal can be used to reveal microscopic structural orientation. To date, reconstruction of the three-dimensional dark-field signal requires dedicated, highly complex algorithms and specialized acquisition hardware. This severely hinders the possible application of orientation-dependent dark-field tomography. In this paper, we show that it is possible to perform this kind of dark-field tomography with common Talbot-Lau interferometer setups by reducing the reconstruction to several smaller independent problems. This allows for the reconstruction to be performed with commercially available software and our findings will therefore help pave the way for a straightforward implementation of orientation-dependent dark-field tomography.

2.
Sci Rep ; 6: 29108, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27357449

ABSTRACT

Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases.

3.
Adv Mater ; 28(37): 8138-8143, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27391813

ABSTRACT

A mortar hybrid material is presented in which biomineralization processes are stimulated by adding a biological component, i.e., bacterial biofilm, to standard mortar. A material is obtained that exhibits increased roughness on the microscale and the nanoscale. Accordingly, the hybrid mortar not only resists wetting but also suppresses the uptake of water by capillary forces.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Bacteria , Biofilms , Wettability
4.
J Pharm Biomed Anal ; 102: 129-36, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25262414

ABSTRACT

Administration of drugs via inhalation is an attractive route for pulmonary and systemic drug delivery. The therapeutic outcome of inhalation therapy depends not only on the dose of the lung-delivered drug, but also on its bioactivity and regional distribution. Fluorescence imaging has the potential to monitor these aspects already during preclinical development of inhaled drugs, but quantitative methods of analysis are lacking. In this proof-of-concept study, we demonstrate that Cryoslicing Imaging allows for 3D quantitative fluorescence imaging on ex vivo murine lungs. Known amounts of fluorescent substance (nanoparticles or fluorophore-drug conjugate) were instilled in the lungs of mice. The excised lungs were measured by Cryoslicing Imaging. Herein, white light and fluorescence images are obtained from the face of a gradually sliced frozen organ block. A quantitative representation of the fluorescence intensity throughout the lung was inferred from the images by accounting for instrument noise, tissue autofluorescence and out-of-plane fluorescence. Importantly, the out-of-plane fluorescence correction is based on the experimentally determined effective light attenuation coefficient of frozen murine lung tissue (10.0 ± 0.6 cm(-1) at 716 nm). The linear correlation between pulmonary total fluorescence intensity and pulmonary fluorophore dose indicates the validity of this method and allows direct fluorophore dose assessment. The pulmonary dose of a fluorescence-labeled drug (FcγR-Alexa750) could be assessed with an estimated accuracy of 9% and the limit of detection in ng regime. Hence, Cryoslicing Imaging can be used for quantitative assessment of dose and 3D distribution of fluorescence-labeled drugs or drug carriers in the lungs of mice.


Subject(s)
Lung/chemistry , Succinimides/analysis , Administration, Inhalation , Animals , Cryoultramicrotomy , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Microscopy, Fluorescence , Nanoparticles/administration & dosage , Receptors, IgG/administration & dosage , Receptors, IgG/analysis , Succinimides/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...