Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(11): 103277, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34755097

ABSTRACT

The decarbonization of heavy industry and the emergence of renewable energy technologies are inextricably linked to access to mineral resources. As such, there is an urgent need to develop benchmarked assessments of the role of critical elements in reducing greenhouse gas emissions. Here, we explore the role of vanadium in decarbonizing construction by serving as a microalloying element and enabling the energy transition as the primary component of flow batteries used for grid-level storage. We estimate that vanadium has enabled an avoided environmental burden totaling 185 million metric tons of CO2 on an annual basis. A granular analysis estimates savings for China and the European Union at 1.15% and 0.18% of their respective emissions, respectively. Our results highlight the role of critical metals in developing low-carbon infrastructure while underscoring the need for holistic assessments to inform policy interventions that mitigate supply chain risks.

2.
Environ Sci Process Impacts ; 23(2): 275-290, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33355560

ABSTRACT

Steel-reinforced concrete is ubiquitously used in construction across the world. The United Nations estimates that the worldwide energy consumption of buildings accounts for 30-40% of global energy production, underlining the importance of the judicious selection of construction materials. Much effort has focused on the use of high-strength low-alloy steels in reinforcement bars whose economy of materials use is predicated upon improved yield strengths in comparison to low-carbon steels. While microalloying is known to allow for reduced steel consumption, a sustainability analysis in terms of embodied energy and CO2 has not thus far been performed. Here we calculate the impact of supplanting lower grade reinforcement bars with higher strength vanadium microalloyed steels on embodied energy and carbon footprint. We find that the increased strength of vanadium microalloyed steel translates into substantial material savings over mild steel, thereby reducing the total global fossil carbon footprint by as much as 0.385%. A more granular analysis pegs savings for China and the European Union at 1.01 and 0.19%, respectively, of their respective emissions. Our cradle-to-gate analysis provides an accounting of the role of microalloying in reducing the carbon footprint of the steel and construction industries and highlights the underappreciated role of alloying elements.


Subject(s)
Steel , Vanadium , Animals , Carbon Footprint , China , Life Cycle Stages
SELECTION OF CITATIONS
SEARCH DETAIL
...