Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Headache ; 59 Suppl 2: 50-65, 2019 07.
Article in English | MEDLINE | ID: mdl-31291018

ABSTRACT

Migraine is a complex disorder that is characterized by an assortment of neurological and systemic effects. While headache is the most prominent feature of migraine, a host of symptoms affecting many physiological functions are also observed before, during, and after an attack. Furthermore, migraineurs are heterogeneous and have a wide range of responses to migraine therapies. The recent approval of calcitonin gene-related-peptide based therapies has opened up the treatment of migraine and generated a renewed interest in migraine research and discovery. Ongoing advances in migraine research have identified a number of other promising therapeutic targets for this disorder. In this review, we highlight emergent treatments within the following biological systems: pituitary adenylate cyclase activating peptdie, 2 non-mu opioid receptors that have low abuse liability - the delta and kappa opioid receptors, orexin, and nitric oxide-based therapies. Multiple mechanisms have been identified in the induction and maintenance of migraine symptoms; and this divergent set of targets have highly distinct biological effects. Increasing the mechanistic diversity of the migraine tool box will lead to more treatment options and better patient care.


Subject(s)
Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Nitric Oxide/metabolism , Orexins/drug effects , Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Receptors, Opioid, delta/drug effects , Receptors, Opioid, kappa/drug effects , Humans
2.
Eur J Pain ; 14(5): 503-9, 2010 May.
Article in English | MEDLINE | ID: mdl-19963418

ABSTRACT

Although many types of nerve damage can cause neuropathic pain, there are substantial commonalities in neuropathic pain symptoms, and patients can be divided into sub-groups based on their symptom profile rather than etiology. Mechanism-based treatment suggests that pharmacotherapy should be chosen be based shared commonalities of symptoms rather than etiology. The aim of the present study was to determine whether type of injury (etiology) or behavioral endpoint (symptom) is a better predictor of pharmacological responsivity in the most commonly used rodent models of neuropathic pain. We used the chronic constriction injury (CCI) model to directly compare the temporal and pharmacological characteristics of four different types of evoked stimuli; heat, pressure, acetone cooling and punctate mechanical. We then compared heat hyperalgesia and mechanical allodynia endpoints across etiologies using the spinal nerve ligation (SNL) model. Evoked pain responses in both models had strikingly different temporal characteristics. We then tested three standard therapies for neuropathic pain from different drug classes, oxycodone, gabapentin, and amitriptyline. Notably, regardless of the model tested, or the time of onset, common endpoints showed near-identical pharmacological responses, and not all endpoints were equally sensitive to drug intervention within one model. Hypersensitivity to heat and pressure were highly responsive to oxycodone, gabapentin, and amitriptyline; whereas cold and mechanical allodynia were more difficult to reverse. Moreover, CCI- and SNL-induced mechanical allodynia was completely insensitive to amitriptyline treatment. We conclude that regardless of model and time course of presentation, different symptoms of peripheral neuropathy have unique pharmacological responses.


Subject(s)
Disease Models, Animal , Neuralgia/physiopathology , Pain Measurement/methods , Pain Threshold/physiology , Analysis of Variance , Animals , Cold Temperature , Hot Temperature , Hyperalgesia/physiopathology , Physical Stimulation , Rats , Sciatic Nerve/injuries , Sciatic Nerve/physiopathology
3.
J Comp Neurol ; 481(4): 416-26, 2005 Jan 24.
Article in English | MEDLINE | ID: mdl-15593339

ABSTRACT

The distribution of delta-opioid receptors (DORs) in the rat central nervous system has been previously characterized by radioligand binding and immunohistochemistry. However, the functional neuroanatomy of DORs has not been mapped in any detail; this is potentially important, because these receptors appear to be primarily cytosolic. Opioid receptors can couple to G(i/o) G proteins, a process that is detected by agonist-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding. The purpose of this study was therefore to determine the distribution of functional DORs, as assessed by [35S]GTPgammaS autoradiographic labeling in response to the DOR agonist deltorphin II. For comparison, adjacent sections were labeled with [125I]deltorphin II or the DOR antagonist [125I]AR-M100613. In all three assays, mu-opioid receptors were blocked pharmacologically. The distributions of [125I]deltorphin II and [125I]AR-M100613 were highly correlated but not identical. Deltorphin II increased [35S]GTPgammaS binding in a concentration-dependent and naltrindole-sensitive manner. The regional [35S]GTPgammaS response to deltorphin II was only moderately predicted by agonist or antagonist radioligand binding (r = 0.67 and 0.50, respectively). [35S]GTPgammaS responses to deltorphin II were strongest in the extended striatum (caudate putamen, nucleus accumbens, olfactory tubercle) and cerebral cortex. In contrast, some areas reported to mediate DOR analgesia (brainstem, spinal cord) possessed a much lower [35S]GTPgammaS response. These findings demonstrate the existence of a partial mismatch between DOR radioligand binding and [35S]GTPgammaS response. This divergence possibly reflects regional heterogeneity in G-protein receptor coupling, or in the subcellular localization of DOR.


Subject(s)
Brain/metabolism , Receptors, Opioid, delta/metabolism , Spinal Cord/metabolism , Analgesia , Animals , Autoradiography , Brain/cytology , Male , Oligopeptides/metabolism , Pain/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...