Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 13: 104, 2020.
Article in English | MEDLINE | ID: mdl-32587503

ABSTRACT

The neuromuscular junctions (NMJs) connect muscle fibers with motor neurons and enable the coordinated contraction of skeletal muscles. The dystrophin-associated glycoprotein complex (DGC) is an essential component of the postsynaptic machinery of the NMJ and is important for the maintenance of NMJ structural integrity. To identify novel proteins that are important for NMJ organization, we performed a mass spectrometry-based screen for interactors of α-dystrobrevin 1 (aDB1), one of the components of the DGC. The guanidine nucleotide exchange factor (GEF) Arhgef5 was found to be one of the aDB1 binding partners that is recruited to Tyr-713 in a phospho-dependent manner. We show here that Arhgef5 localizes to the NMJ and that its genetic depletion in the muscle causes the fragmentation of the synapses in conditional knockout mice. Arhgef5 loss in vivo is associated with a reduction in the levels of active GTP-bound RhoA and Cdc42 GTPases, highlighting the importance of actin dynamics regulation for the maintenance of NMJ integrity.

2.
PLoS One ; 13(1): e0191040, 2018.
Article in English | MEDLINE | ID: mdl-29324807

ABSTRACT

It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition of VEGF signaling may contribute to the shift in macrophage polarity observed in different pregnancy disorders, including preeclampsia.


Subject(s)
Cell Polarity , Decidua/cytology , Macrophages/cytology , Vascular Endothelial Growth Factor A/physiology , Adult , Cell Line , Female , Humans , Real-Time Polymerase Chain Reaction
3.
PLoS One ; 12(1): e0169809, 2017.
Article in English | MEDLINE | ID: mdl-28072841

ABSTRACT

Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic ß-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17µM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.


Subject(s)
Coordination Complexes/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin Resistance , Receptor, Insulin/agonists , Vanadium Compounds/therapeutic use , 3T3 Cells , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cells, Cultured , Coordination Complexes/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Fatty Acids/blood , Female , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Binding , Receptor, Insulin/metabolism , Triglycerides/blood , Vanadium Compounds/chemical synthesis , Vanadium Compounds/pharmacology , Wnt3A Protein/genetics , Wnt3A Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...