Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(29): 19846-19855, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37409029

ABSTRACT

A green, efficient, and straightforward methodology for the three-component synthesis of 2,4,5-triarylimidazole has been developed under solvent-free conditions using unconventional CuB4O7 as a promoter. This green approach encouragingly provides access to a library of 2,4,5-tri-arylimidazole. Also, we have been able to isolate the compound (5) and (6) in situ, which provides an insight into the direct conversion of CuB4O7 into copper acetate in the presence of NH4OAc under solvent-free condition. The main advantage of this protocol includes an easy reaction procedure, short reaction time, and easy work up of the product without using any tedious separation method.

2.
Heliyon ; 6(10): e05182, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33072922

ABSTRACT

1-[2-(2-hydroxy-3-methoxy-5-(4-methoxyphenylazo)benzaldeneamino)ethyl]-3-methyl-3H-imidazole (HMY) and 1-[2-(2-hydroxy-3-methoxy-5-(4-methylphenylazo)benzaldene amino)ethyl]-3-methyl-3H-imidazole (HMM) were synthesized and characterized using spectral analysis. Conformational analysis has been achieved using potential energy scan for different rotable bonds for obtaining the lowest energy conformer. Conformer with minimum energy is obtained along the dihedral angle N30-C31-C34-N37. QTAIM analysis gives nature and strength of hydrogen bonding interactions. UV-Vis, electrostatic potential and chemical descriptors are analyzed. Interaction of HMY and HMM with graphene is analyzed in terms of SERS activity. Chemical reactivity descriptors were investigated for graphene-drug systems. NLO activity of parent drugs and its graphene complexes show good activity. The wavenumber downshift of different modes is noted. Title molecules exhibit inhibitory activity against cytochrome C peroxidase. Interactions with graphene sheets are theoretically predicted for the title compounds.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 151: 965-79, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26188703

ABSTRACT

The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide have been investigated experimentally and theoretically. Gauge-including atomic orbital (1)H NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated geometrical parameters are in agreement with that of similar derivatives. Molecular electrostatic potential was performed by the DFT method. Mulliken's net charges have been calculated and compared with the atomic natural charges. First and second hyperpolarizability are calculated in order to find its role in non-linear optics. Molecular docking is also reported.


Subject(s)
Cyclic N-Oxides/chemistry , Imidazoles/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Vibration
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 146: 307-22, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-25819320

ABSTRACT

In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated (1)H NMR results are in good agreement with experimental data. Molecular docking study is also reported.


Subject(s)
Imidazoles/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
5.
Dalton Trans ; 40(41): 10873-84, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21717020

ABSTRACT

Multiple drug resistance (MDR) remains a major clinical challenge for cancer treatment. P-glycoprotein is the major contributor and they exceed their role in the chemotherapy resistance of most of the malignancies. Attempts in several preclinical and clinical studies to reverse the MDR phenomenon by using MDR modulators have not yet generated promising results. In the present study, a co-ordination complex of zinc viz., Zn N-(2-hydroxyacetophenone)glycinate (ZnNG) has been synthesized, characterized and its antitumour activity was tested in vitro against drug sensitive and resistant human T-lymphoblastic leukemic cell lines (CCRF/CEM and CEM/ADR5000 respectively) and in vivo against Ehrlich ascites carcinoma (EAC) implanted in female Swiss albino mice. To evaluate the cytotoxic potential of ZnNG, we used sensitive CCRF/CEM and drug resistant CEM/ADR 5000 cell lines in vitro. Moreover, ZnNG also has the potential ability to reverse the multidrug resistance phenotype in drug resistant CEM/ADR 5000 cell line and induces apoptosis in combination with vinblastine. ZnNG remarkably increases the life span of Swiss albino mice bearing sensitive and doxorubicin resistant subline of EAC in presence and in absence of doxorubicin. In addition, intraperitoneal application of ZnNG in mice does not show any systemic toxicity in preliminary trials in normal mice. To conclude, a novel metal chelate of zinc viz., ZnNG, may be a promising therapeutic agent against sensitive as well as drug resistant cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Carcinoma, Ehrlich Tumor , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Doxorubicin/pharmacology , Female , Humans , Mice , Reactive Oxygen Species/metabolism , Vinblastine/pharmacology , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...