Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 20(9): e202201144, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37471640

ABSTRACT

Mangroves are abundant in bioactive natural substances that fight off pathogenic diseases. Different parts of R. apiculata, an abundant mangrove found in Bhitarkanika National Park, India were extracted with methanol and a mixture of solvents methanol/ethanol/chloroform (60 : 20 : 20) to evaluate their antimicrobial properties. The combination solvent extract of bark had the highest zone of inhibition (ZOI) of 18.62 mm against Pseudomonas aeruginosa and a ZOI of 17.41 mm against Streptococcus mitis. Bark extracts had the highest DPPH (43 %) and FRAP (96 %) activities. The combination solvent bark extract of R. apiculata had the highest ZOI of 20.42 mm (lowest MIC of 2.12 µg/ml) against Candida albicans and ZOI of 15.33 mm (MIC of 3.02 µg/mL) against Penicillium chrysogenum. Combination bark extracts of R. apiculata contained flavanols than methanolic extracts. The crude extract of R. apiculata bark made with a mixture of solvents containing more active ingredients could be used in novel drug formulation.


Subject(s)
Anti-Infective Agents , Rhizophoraceae , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rhizophoraceae/chemistry , Methanol , Anti-Infective Agents/pharmacology , Solvents , Microbial Sensitivity Tests
2.
Plant Physiol Biochem ; 190: 62-69, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36099809

ABSTRACT

Macrotyloma uniflorum (horse gram) is considered an under-utilized legume crop despite its nutritional and medicinal values. In India, it has wide acceptance among farming communities. This investigation emphasized on the possible application of two endosymbionts (Bacillus sp. AS03 and Rhizobium sp. AS05) of horse gram cultivated on Cr (VI)-contaminated soil. The photosynthetic performance (PIφ) of Cr treated plants co-inoculated with AS03 and AS05 was significantly improved compared with non-inoculated Cr treated plants based on photosynthetic yield, which was evidenced from the rise in the fluorescence at I-P transient and rate of photosynthesis (pN), indicating synergistic action between plant and bacteria (AS03 and AS05). The smooth electron transport from PS II to PS I was achieved in the Cr stressed plants inoculated with both the bacterial strains. The detrimental effects of Cr toxicity on the root tips were also minimized with bioinoculation as revealed from mitotic index. Plants with dual inoculation of AS03 and AS05 had significantly lesser chromosomal aberration in the roots. Dual inoculation biochar or seed inoculation have beneficial impact on the plant photosynthetic performance along with improved growth of roots in plants treated with Cr (VI). The results of the current work suggest the possitive effect of dual inoculation of Cr tolerant endosymbionts, Bacillus sp. (AS03) and nodulating Rhizobium sp. (AS05), in reducing cytological as well as physiological stress of plants in Cr (VI) contaminated soil.


Subject(s)
Bacillus , Fabaceae , Rhizobium , Soil Pollutants , Biodegradation, Environmental , Chromium/pharmacology , Fabaceae/microbiology , Photosynthesis , Plant Roots , Soil , Soil Pollutants/analysis
3.
J Obstet Gynaecol India ; 72(4): 349-352, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35923511

ABSTRACT

Fraser syndrome is a rare disorder with autosomal recessive inheritance having a wide spectrum of phenotypic appearances. A fourteen-year-old female presented to us with a chief complaint of acute retention of urine without any cyclical abdominal pain with syndromic appearance. She had partial vaginal agenesis which was treated by successful reconstructive surgery by lotus petal flap technique followed by recanalisation. Objective of this report is to highlight the rare disease of Fraser syndrome along with successful rare surgical management.

4.
Plants (Basel) ; 11(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35448798

ABSTRACT

Weed management has become the most important and inevitable aspect of crop management for achieving a higher rice yield. Nowadays, chemical herbicide application has become a popular practice for managing weeds in different rice cultures. However, herbicide application can have qualitative and quantitative impacts on soil microorganisms and soil enzymes, particularly in the case of new herbicide molecules and their indiscriminate use for a longer period. Further, different rice establishment methods also play a significant role in soil microbial population dynamics as well as soil biological properties. Keeping these in view, a field experiment was conducted at the Agronomy Main Research Farm, Orissa University of Agriculture and Technology (OUAT), India, during the kharif season of 2016 and 2017, on the impact of crop establishment methods and weed management practices on soil microbial and enzymatic status. The field experiment was laid out in a split-plot design with three replications with four crop establishment methods in the main plot, viz., M1, Direct Seeded Rice (DSR); M2, Wet Seeded Rice (WSR); M3,Unpuddled Transplanted Rice (NPTR); M4, Puddled Transplanted Rice (PTR), and six weed management practices in the sub-plot, viz., W1, Weedy check; W2, Bensulfuron methyl 0.6% + Pretilachlor 6% (pre-emergence (PE)) 0.660 kg ha-1 + Hand weeding (HW) at 30 days after sowing/transplanting (days after sowing/transplanting (DAS/T)); W3, Bensulfuron methyl 0.6% + Pretilachlor 6% (PE) 0.495 kg ha-1 + HW at 30 DAS/T; W4, Bensulfuron methyl 0.6% + Pretilachlor 6% (PE) 0.495 kg ha-1 + Bispyribac-Sodium (post-emergence(POE)) 0.025 kg ha-1 at 15 DAS/T; W5, Cono weeding (CW) at 15 DAS/T + hand weeding 30 DAS/T, and W6, Brown manuring/Green manuring. The initial decline in the microbial population was observed due to herbicide application in NPTR and PTR up to 7 DAS/T and then it increased up to 28 DAS/T. There was a reduction in soil microbial and enzymatic status after the application of herbicides Bensulfuron methyl 0.6% + Pretilachlor 6% (PE) and Bispyribac-Sodium (POE) that again followed an upward graph with crop age. Significant variation in enzymatic activity and the microbial count was also observed among treatments involving crop establishment methods. The study revealed that improved microbial population and enzyme activity were noted in unpuddled transplanted rice under organic weed management due to favorable conditions, and chemical weed control initially affected microbial population and activities.

5.
Environ Sci Pollut Res Int ; 28(24): 31717-31730, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33611748

ABSTRACT

Sukinda chromite mine of Odisha is a heavily polluted site, generating huge overburden dumps. The present experiment was designed to evaluate the potential of two native nodule endophytic bacterial strains, viz. Bacillus aryabhattai AS03 (MT645244) and Rhizobium pusense AS05 (MT645243), isolated from contaminated sites to be considered remediation tool to minimize the effect of Cr toxicity on Macrotyloma uniflorum var. Madhu. The two nodule endophytic bacterial strains AS03 and AS05 exhibited tolerance to 1800 and 3000 ppm of Cr(VI) respectively in vitro when cultured alone. AAS analysis confirmed higher accumulation of Cr(VI) in roots and less accumulation in shoots which is dose-specific (bio-inoculant) either treated alone or combined. Complete absence of Cr accumulation approximately 99% in shoots of Macrotyloma was observed owing to synergistic effect of both the strains (biochar-based formulation). This study also suggests increased shoot and root length, nodule nos., and leghemoglobin content of the plant at 60 days indicating the plant growth-promoting effects of both the strains. ROS and antioxidant enzymes of the plant recorded decreasing trend in inoculated plants. However, a significant increment in transpiration rate, total photosynthetic rate, intracellular CO2 conc., and stomatal conductance in leaves was observed owing to dual inoculation. Our findings corroborate the supremacy of synergistic effect of both the strains applied in the form of biochar-based biofertilizer in enhancing growth and tolerance index of M. uniflorum cultivated in Cr(VI)-stressed soil. This investigation depicts the efficiency of the two nodule bacteria as a mixed inoculant to alleviate Cr toxicity and making the seeds safe for consumption.


Subject(s)
Endophytes , Soil Pollutants , Bacillus , Chromium/analysis , Plant Roots/chemistry , Rhizobium , Soil , Soil Pollutants/analysis
6.
Protoplasma ; 254(6): 2225-2236, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28455550

ABSTRACT

The present investigation analyzes the in vitro P solubilization [Ca-P, Al-P, Fe(II)-P, and Fe(III)-P] efficiency of native PSB strains from acid soils of Odisha and exploitation of the same through biofertilization in peanut (Arachis hypogaea L.) growth and P acquisition. One hundred six numbers of soil samples with pH ≤ 5.50 were collected from five districts of Odisha viz., Balasore, Cuttack, Khordha, Keonjhar, and Mayurbhanj. One bacterial isolate from each district were selected and analyzed for their P solubilization efficiency in National Botanical Research Institute Phosphate broths with Ca, Al, and Fe-complexed phosphates. CTC12 and KHD08 transformed more amount of soluble P from Ca-P (CTC12 393.30 mg/L; KHD08 465.25 mg/L), Al-P (CTC12 40.00 mg/L; KHD08 34.50 mg/L), Fe(III)-P (CTC12 175.50 mg/L; KHD08 168.75 mg/L), and Fe(II)-P (CTC12 47.40 mg/L; KHD08 42.00 mg/L) after 8 days of incubation. The bioconversion of P by all the five strains in the broth medium followed the order Ca-P > Fe(III)-P > Fe(II)-P > Al-P. The identified five strains were Bacillus cereus BLS18 (KT582541), Bacillus amyloliquefaciens CTC12 (KT633845), Burkholderia cepacia KHD08 (KT717633), B. cepacia KJR03 (KT717634), and B. cepacia K1 (KM030037) and further studied for biofertilization effects on peanut. CTC12 and KHD08 enhanced the soil available P around 65 and 58% and reduced the amount of each Al3+ about 79 and 81%, respectively, over the uninoculated control pots in the peanut rhizosphere. Moreover, all tested PSB strains could be able to successfully mobilize P from inorganic P fractions (non-occluded Al-P and Fe-P). The strains CTC12 and KHD08 increased the pod yield (114 and 113%), shoot P (92 and 94%), and kernel P (100 and 101%), respectively, over the control. However, B. amyloliquefaciens CTC12 and B. cepacia KHD08 proved to be the potent P solubilizers in promoting peanut growth and yield.


Subject(s)
Arachis/metabolism , Phosphates/metabolism , Plant Roots/metabolism , Soil Microbiology , Arachis/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/metabolism , Burkholderia cepacia/genetics , Burkholderia cepacia/isolation & purification , Burkholderia cepacia/metabolism , Hydrogen-Ion Concentration , Molecular Typing , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil/chemistry , Solubility
7.
Protoplasma ; 251(4): 943-53, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24414168

ABSTRACT

Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif genes (nifH, nifD and nifK) and protein profile of Azospirillum strains revealed inter-generic and inter-specific diversity among the strains. In vitro nitrogen fixation performance and the plant growth promotion activities, viz. siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were found to vary among the Azospirillum strains. The effect of Azospirillum formulations on growth of rice var. Khandagiri under field condition was evaluated, which revealed that the native formulation of Azospirillum of CRRI field (As6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result. The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database.


Subject(s)
Azospirillum/genetics , Azospirillum/physiology , Oryza/metabolism , Oryza/microbiology , Azospirillum/classification , Nitrogen Fixation/physiology , Oryza/growth & development , RNA, Ribosomal, 16S/genetics
8.
Plant Signal Behav ; 9(7): e29377, 2014.
Article in English | MEDLINE | ID: mdl-25763502

ABSTRACT

The plant growth promoting rhizobacteria (PGPRs) as a biofertilizer provide agricultural benefits to advance various crops productivity. Recently, we discovered a novel Azotobacter vinellandii (SRIAz3) from rice rhizosphere, which is well competent to improve rice productivity. In this study, we investigated a role of A. vinellandii to confer salinity tolerance in rice (var. IR64). A. vinellandii inoculated rice plants showed higher proline and malondialdehyde content under 200 mM NaCl stress as compared with uninoculated one. The endogenous level of plant hormones viz., indole-3 acetic acid (IAA), gibberellins (GA3), zeatint (Zt) was higher in A. vinellandii inoculated plants under high salinity. The fresh biomass of root and shoot were relatively elevated in A. vinellandii inoculated rice. Further, the macronutrient profile was superior in A. vinellandii inoculated plants under salinity as compared with non-inoculated plants. The present findings further suggest that A. vinellandii, a potent biofertilzer, potentially confer salinity stress tolerance in rice via sustaining growth and improving compatible solutes and nutrients profile and thereby crop improvement.


Subject(s)
Azotobacter , Endophytes , Oryza/microbiology , Plant Growth Regulators/metabolism , Salt Tolerance , Sodium Chloride/metabolism , Stress, Physiological , Biomass , Fertilizers , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Oryza/growth & development , Oryza/metabolism , Oxidative Stress , Photosynthesis , Plant Roots/growth & development , Plant Roots/microbiology , Plant Shoots/growth & development , Salinity , Seedlings , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...