Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Phys Chem Lett ; 15(16): 4430-4436, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38626390

ABSTRACT

Elucidating isotope exchange between atmospheric trace molecular species is important for environment monitoring, climate control studies, and a fundamental understanding of atmospheric chemistry. Here, we provide direct experimental evidence of oxygen-isotopic exchange between carbon dioxide (CO2) and nitrogen dioxide (NO2), which are simultaneously emitted into the atmosphere from common sources. A combined near-infrared and UV-vis optical cavity-enhanced experimental investigation along with quantum-chemical calculations followed by a reaction modeling study revealed that CO2 and NO2 can communicate isotopically by near-ultraviolet-driven NO2 photolysis. Our results found evidence for a near-barrierless (1.67 kcal/mol) nitrate-containing complex having a very short lifetime (∼13 ns) which facilitates the transfer of 18O-isotopes from 18O12C16O to N16O16O, leading to isotopic depletion of 18O in 18O12C16O, thus opening a new gas-phase isotope-selective chemical transformation mechanism in the lower atmosphere. This isotope exchange study may serve as a new window into the fundamental understanding of isotopic photochemistry, oxygen isotopic fractionations, and climate modeling.

2.
Analyst ; 149(6): 1791-1798, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38362752

ABSTRACT

Forward scattering is an essential tool for investigating the colloidal suspension of polystyrene microspheres (PSMs). Evanescent wave coupled cavity ringdown spectroscopy (EW-CRDS) shows the anomalous extinction behavior in the limit of PSM particles that is much larger than the wavelength. EW-CRDS is a highly sensitive technique that improves weak absorption signals by enhancing the absorption path length, allowing for probing a range of processes at the solid/liquid interface by assessing the extinction properties. Additionally, it possesses the ability to sense a minimum absorbance of 1.2 × 10-6. EW-CRDS provides sufficient accuracy to detect correlation effects for PSMs in water at the interfacial region and their influence on forward scattering or extinction. In this work, we discuss the impact of volume fraction on the extinction of scatterers composed of microparticles in aqueous media. The findings of this study will contribute to a deeper understanding of the scattering dynamics in colloidal suspensions, with potential applications in various fields, including biology and metrology.

3.
Anal Chem ; 95(24): 9357-9365, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37282542

ABSTRACT

Insight into the aggregation kinetics of gold nanoparticles (GNPs) is critical for developing a colorimetric assay extensively used in chemical and biomolecular sensing. The aggregation of NPs plays a significant role in many natural and industrial processes, demanding comprehensive perceptions of the aggregation kinetics at a solid-liquid interface. However, the direct observation of the melamine-induced aggregation process of GNPs in the time-domain still remains a challenge. There is little to no information on the fundamental mechanisms of such kinetics using evanescent waves. Total internal reflection (TIR) has been applied to generate the evanescent field (EF), exploring aggregation kinetics near the solid-liquid interface. Here, we utilized a precise optical cavity-based method, an evanescent-wave coupled cavity ring-down spectroscopy (EW-CRDS), that can probe the melamine-induced aggregation kinetics of GNPs. The key feature of the present method is that the evanescent field generated by TIR illumination harnesses the power of CRDS to study 2D fractals via the collision and attachment of the GNPs and their melamine-induced aggregates at the interfacial region in real-time. This kinetic study reveals a critical point for diffusion-limited aggregation and provides insights into the design and optimization of colorimetric sensors that exploit the aggregation of GNPs. Furthermore, the EW-CRDS is a unique analytical approach that helps to deepen our understanding in probing the real-time aggregation process, detecting the presence of aggregator as compared to UV-vis and dynamic light scattering (DLS) spectroscopy.

4.
Eur J Mass Spectrom (Chichester) ; 29(3): 192-199, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37192662

ABSTRACT

Conventional endoscopic biopsy tests are not suitable for early detection of the acute onset and progression of peptic ulcer as well as various gastric complications. This also limits its suitability for widespread population-based screening and consequently, many people with complex gastric phenotypes remain undiagnosed. Here, we demonstrate a new non-invasive methodology for accurate diagnosis and classification of various gastric disorders exploiting a pattern-recognition-based cluster analysis of a breathomics dataset generated from a simple residual gas analyzer-mass spectrometry. The clustering approach recognizes unique breathograms and "breathprints" signatures that clearly reflect the specific gastric condition of an individual person. The method can selectively distinguish the breath of peptic ulcer and other gastric dysfunctions like dyspepsia, gastritis, and gastroesophageal reflux disease patients from the exhaled breath of healthy individuals with high diagnostic sensitivity and specificity. Moreover, the clustering method exhibited a reasonable power to selectively classify the early-stage and high-risk gastric conditions with/without ulceration, thus opening a new non-invasive analytical avenue for early detection, follow-up, and fast population-based robust screening strategy of gastric complications in the real-world clinical domain.


Subject(s)
Dyspepsia , Gastritis , Peptic Ulcer , Humans , Breath Tests/methods , Peptic Ulcer/complications , Peptic Ulcer/diagnosis , Dyspepsia/complications , Dyspepsia/diagnosis , Gastritis/diagnosis , Gastritis/complications , Sensitivity and Specificity
5.
Anal Chem ; 94(18): 6689-6694, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35476390

ABSTRACT

Surface plasmon resonance (SPR) is an interfacial phenomenon, and the plasmonic sensors are based on the optical excitation of the collective oscillations of free electrons at a metal-dielectric interface. Here, we present the new development of an incoherent broadband (IBB)-SPR probe combining the wavelength interrogation technique with polarization-multiplexing (PM). The performance characteristics of the so-called PMIBB-SPR strategy was validated for the detection of nonenzymatic aqueous urea samples as a representative example for plasmonic sensing with an excellent wavelength and phase sensitivities of 0.1363 nm/mM and 10.34597 mM/deg, respectively. We further explored the missing link between plasmonic polariton resonance (PPR) and polarization modulation via the measurements of the Stokes parameters of the reflected light. This deepens our understanding of the fundamentals of polarization-multiplexed SPR phenomenon at the interface. This study thus paves the way to develop a new-generation analytical technique with the aim of tracking various real-time chemical and biological molecular interactions occurring at the interfaces.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Urea
6.
Biometals ; 35(3): 499-517, 2022 06.
Article in English | MEDLINE | ID: mdl-35355153

ABSTRACT

A family of dioxidovanadium(V) complexes (1-4) of the type [Na(H2O)x]+[VVO2(HL1-4)]- (x = 4, 4.5 and 7) where HL2- represents the dianionic form of 2-hydroxybenzoylhydrazone of 2-hydroxyacetophenone (H2L1, complex 1), 2-hydroxy-5-methylacetophenone (H2L2, complex 2), 2-hydroxy-5-methoxyacetophenone (H2L3, complex 3) and 2-hydroxy-5-chloroacetophenone (H2L4, complex 4), have been synthesized and characterized by analytical and spectral methods. These complexes exhibited the potential abilities to suppress the erythrocytes carbonic anhydrase enzymatic activity in type 1 and type 2 diabetic patients (in vitro), promising antidiabetic activity against T2 diabetic mice (in vivo). They also exhibited significant cytotoxic activity against cervical cancer (SiHa) cells (in vitro) as the IC50 value of complexes 1, 2 and 4 is substantially lower than the value found for cisplatin while that of 3 is comparable and follow the order: 4 < 1 < 2 < 3 and can kill the cells by apoptosis via the generation of reactive oxygen species (ROS). The complexes are soluble both in water and octanol media and also non-toxic at working concentrations. The antidiabetic activity of these four complexes follows the order: 4 > 2 > 1 > 3 while both the carbonic anhydrase and cytotoxic activity follow the order: 4 > 1 > 2 > 3 suggesting that complex 4, containing electron withdrawing Cl atom is the most reactive while 3 with electron donating OCH3 group is the least reactive species. The molecular docking study on hCA-I and hCA-II demonstrates that complexes interact via hydrogen bonding as well as different types of π-stacking.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrases , Diabetes Mellitus, Experimental , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Humans , Hydrazones/chemistry , Hydrazones/pharmacology , Hypoglycemic Agents/pharmacology , Mice , Molecular Docking Simulation , Structure-Activity Relationship
7.
Analyst ; 147(6): 1024-1054, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35188498

ABSTRACT

Selectivity is one of the most crucial figures of merit in trace gas sensing, and thus a comprehensive assessment is necessary to have a clear picture of sensitivity, selectivity, and their interrelations in terms of quantitative and qualitative views. Recent reviews on gas sensors/techniques are limited to specific sensors, sensors with unconventional materials, various technological exploitation, or specific applications. However, the selectivity is either unexplored in most cases or explained concerning the materials/techniques involved in a demonstration. Therefore, there is a pressing need to identify the possible ways to improve the selectivity of a gas sensor/technique with low or zero cross-sensitivity to other compounds/gases present in the working environment. Analytical techniques involving spectroscopic and mass-spectrometry-based methods are excellent in selectivity but have limited applicability for field deployment compared to the miniatured solid state sensors. Solid state sensors are the mainly studied gas sensors due to their flexibility, portability, and cost-effectiveness, and being technologically favorable but suffer from low selectivity in harsh and humid environments. This review will evaluate the limitations and possible solutions to selectivity issues in a wide variety of gas sensors. Here, we have discussed the gas-sensor technologies and underlying sensing mechanisms in two main groups - spectroscopic and non-spectroscopic. Recent state-of-the-art techniques and fundamental challenges are discussed to improve the selectivity and other gas sensor indicators and future perspectives.


Subject(s)
Gases
8.
Opt Lett ; 46(23): 5826-5829, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34851900

ABSTRACT

We report the experimental evidence of the Imbert-Fedorov (IF) shift in monolayer MoS2 for a fundamental Gaussian beam. Using Jones vector formalism, we have shown a novel, to the best of our knowledge, pathway to apply the quantum weak measurement technique for easy and accurate determination of the IF shift. We have revealed the dependence of IF shift over a large range of angles of incidence along with the mode of polarization of the incident light. Our experimental findings via the weak value amplification scheme are in good agreement with the theoretical analysis. The present method is a general one and can also be implemented for other materials to observe such tiny transverse shifts.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120193, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34314969

ABSTRACT

We report a robust technique to fabricate a cost-efficient Raman substrate which is composed of polyvinylpyrrolidone (PVP) coated gold nanoparticles layer on commercial aluminum foil. The layer of metal nanoparticles on the aluminum foil, i.e., the nanoparticle-on-mirror (NPoM) structure was fabricated by spraying nanoparticle colloidal solution directly on the foil. The detection limit (LOD) of NPoM substrate is investigated by performing the SERS for Rhodamine 6G (R6G) with the concentration ranging from mM to nM without any post treatment of the substrate. The findings show that the LOD of 1 nM and maximum intensity enhancement factor of ~ 24 is accomplished. Field enhancement owing to reflection from the metallic mirror is the reason behind the signal enhancement and it would be beneficial for routine clinical applications, trace chemical detection, and disease diagnostics.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Cost-Benefit Analysis , Gold , Povidone
10.
Isotopes Environ Health Stud ; 57(4): 368-385, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34080500

ABSTRACT

Water vapor, the most important greenhouse gas in the atmosphere, has four natural stable isotopologues (H216O, H217O, H218O and HD16O), and their isotopic compositions can be used as hydrological tracers. But the underlying processes and pattern-dynamics of the isotopic compositions of atmospheric water vapor and precipitation in response to various meteorological conditions during monsoon season in a tropical hot and humid region is poorly understood. Here, we present results of H and triple-O-isotopes of water in precipitation and atmospheric water vapor during monsoon season exploiting high-resolution integrated cavity output spectroscopy technique. We observed a distinct temporal variation of the isotopic compositions of water at different phases of the monsoon. The diurnal patterns of the isotopic variations were influenced by the local meteorological factors such as temperature, relative humidity and amount of precipitation. We also investigated the monsoonal dynamics of the second-order isotopic parameters, so-called d-excess and 17O-excess along with the influence of local meteorological factors on isotopic variations to improve our understanding of the underlying isotopic fractionation processes. Consequently, our results provide a unique isotopic-fingerprint dataset of rainwater and atmospheric water vapor for a tropical region and thus shed a new light on hydrological and meteorological processes in the atmosphere.


Subject(s)
Deuterium/analysis , Oxygen Isotopes/analysis , Rain/chemistry , Steam/analysis , Atmosphere , Cyclonic Storms , India , Seasons , Spectrum Analysis , Temperature
12.
Anal Chem ; 92(8): 5717-5723, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32202406

ABSTRACT

Water, the major body fluid in humans, has four main naturally occurring isotopologues, H216O, H217O, H218O, and H2H16O (i.e., HD16O) with different masses. The underlying mechanisms of the isotope-specific water-metabolism in the human gastrointestinal (GI) tract and respiratory system are largely unknown and remained illusive for several decades. Here, a new strategy has been demonstrated that provides direct quantitative experimental evidence of triple-isotopic signatures of water-metabolism in the human body in response to the individual's water intake habit. The distribution of water isotopes has been monitored in drinking water (DW; δD = -36.59 ± 10.64‰ (SD), δ18O = -5.41 ± 1.47‰ (SD), and δ17O = -2.92 ± 0.79‰ (SD)), GI fluid (GF; δD = -35.91 ± 7.30‰ (SD), δ18O = -3.98 ± 1.29‰ (SD), and δ17O = -2.37 ± 0.57‰ (SD)), and human exhaled breath (EB; δD = -119.63 ± 7.27‰ (SD), δ18O = -13.69 ± 1.23‰ (SD), and δ17O = -8.77 ± 0.98‰ (SD)) using a laser-based off-axis integrated cavity output spectroscopy (OA-ICOS) technique. This study explored a new analytical method to disentangle the competing effects of isotopic fractionations of water during respiration in humans. In addition, our findings revealed that deuterium-enriched exhaled semiheavy water, i.e., HD16O is a new marker of the noninvasive assessment of the ulcer-causing H. pylori gastric pathogen. We also clearly showed that the water-metabolism-derived triple-isotopic compositions due to impaired water absorption in the GI tract can be used as unique tracers to track the onset of various GI dysfunctions. These findings are thus bringing a new analytical methodology to better understand the isotope-selective water-metabolism that will have enormous applications for clinical testing purposes.


Subject(s)
Body Fluids/chemistry , Drinking Water/analysis , Respiratory System/chemistry , Water/analysis , Adolescent , Adult , Aged , Deuterium , Female , Humans , Male , Middle Aged , Oxygen Isotopes , Spectrum Analysis , Young Adult
13.
Anal Chem ; 92(5): 3998-4005, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32008320

ABSTRACT

We report on the development of a simple, linear optical cavity-based system combining evanescent wave (EW) with high-sensitive cavity ring-down spectroscopy (CRDS) technique using a diode laser at 644 nm and a right-angled prism for evanescent field generation on prism surface. We characterized the setup in detail and achieved an optimum ring-down time of 159.4 ns and a minimum absorption coefficient of αmin = 1.67 × 10-6 cm-1. We utilized this setup to investigate the salt-induced aggregation kinetics of gold (Au) and silver (Ag) nanoparticles (NPs) at the prism interface with high-sensitivity. We evaluated the extinction rates on the surface due to Au and Ag NPs aggregation and examined the variations due to their respective concentrations. To demonstrate the applicability of the developed EW-CRDS prototype setup to different molecular systems, we investigated the urease-bound aggregation kinetics of the Au and Ag NPs which has not been explored earlier by this linear cavity geometry. We finally illustrated the aggregation dynamics through surface imaging, thus demonstrating an alternative analytical approach to monitor interfacial phenomena using EW-CRDS technique.

14.
J Phys Chem A ; 124(6): 1104-1111, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-31961682

ABSTRACT

The underlying mechanisms of the triple-oxygen (16O, 17O, and 18O) isotopic content of deuterated (D) isotopologues of water in H-D exchange reactions in the gas phase remain elusive. Herein, we have demonstrated a high-resolution gas-phase spectral analysis of doubly (D2O) and singly (HDO) deuterated isotopologues of water in the region around 7.8 µm using quantum cascade laser-based cavity ring-down spectroscopy. Isotopic fractionations among doubly and singly deuterated species of water, D216O, HD16O, HD17O, and HD18O, in the gas phase were carried out by probing the fundamental and hot band transitions in the ν2 (bending) mode of D2O and the fundamental ν2 transitions for the other water isotopes. We subsequently investigated the fractionations of different D-enriched water isotopologues for the H-D exchange reaction using various mixtures of D2O in H2O. We explored the potential role of triple-oxygen isotopic contents through enrichments and depletions of HD16O, HD17O, and HD18O, involved in the H-D reaction. Our first clear, direct, and quantitative experimental evidence reveals a new picture of gas-phase isotopic fractionation chemistry in a mixture of light and heavy water (H2O-D2O).

15.
J Breath Res ; 13(1): 016002, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30262688

ABSTRACT

Over the past several decades, it has been generally believed that microbial nitrification and denitrification are not significant processes in the human gastrointestinal tract. Moreover, the underlying physiological link between exhaled nitrous oxide (N2O) and aerobic denitrification in the gastric environment is still largely unknown. In this report, we provide direct experimental evidence of the aerobic denitrification process in the human gastrointestinal tract by evaluating concentrations of dissolved N2O and its precursor nitrite ([Formula: see text]) ion in the gastric juice along with exhaled N2O concentration using a high-precision laser spectroscopy technique. Moreover, in vitro studies of gastric fluid in patients reveal a new mechanism of nitrification of ammonium ion ([Formula: see text]) followed by denitrification of [Formula: see text] leading to the formation of N2O in the gastric environment, which is eventually excreted in exhaled breath. This observation was subsequently validated under in vivo physiological conditions exploiting the urease activity of the gastric pathogen Helicobacter pylori. Consequently, our findings established a strong physiological link between exhaled N2O and bacterial infection in the stomach. This deepens our understanding of the unusual microbial denitrification in the gastric environment, providing new insight into the activities of human-associated microorganisms, which eventually affect the human physiology and health.


Subject(s)
Breath Tests/methods , Denitrification , Gastric Juice/metabolism , Nitrification , Nitrous Oxide/analysis , Gastrointestinal Tract/microbiology , Helicobacter pylori/physiology , Humans , Metabolic Networks and Pathways , Spectrum Analysis
16.
Analyst ; 143(9): 2109-2114, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29645022

ABSTRACT

We report on the development of a mid-infrared cavity ring-down spectrometer (CRDS) coupled with a continuous wave (cw) external cavity quantum cascade laser (EC-QCL), operating between 6.0 µm and 6.3 µm, for high-resolution spectroscopic studies of ammonia (NH3) which served as a bench-mark molecule in this spectral region. We characterized the EC-QCL based CRDS system in detail and achieved a noise-equivalent absorption (NEA) coefficient of 2.11 × 10-9 cm-1 Hz-1/2 for a 100 Hz data acquisition rate. We thereafter exploited the system for high-resolution spectroscopic analysis of interference-free 10 transition lines of the ν4 fundamental vibrational band of NH3 centred at ∼6.2 µm. We probed the strongest interference-free absorption line RQ(4,3) of ν4, centred at 1613.370 cm-1 for highly-sensitive trace detection of NH3 and subsequently achieved a minimum detection sensitivity (1σ) of 2.78 × 109 molecules per cm3 which translated into the detection limit of 740 parts-per-trillion by volume (pptv/10-12) at a pressure of 115 Torr for an integration time of ∼167 seconds. To demonstrate the efficacy of the present system in real-life applications, we finally measured the mixing ratios of NH3 present in ambient air and human exhaled breath with high sensitivity and molecular specificity.

17.
Isotopes Environ Health Stud ; 54(4): 435-445, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29688034

ABSTRACT

Helicobacter pylori causes several gastrointestinal diseases and may also contribute to the development of type 2 diabetes (T2D). Several studies suggest that there might be a potential link between H. pylori infection and T2D, but it still remains the subject of debate. Here, we first report the cumulative effect of H. pylori infection and T2D by exploiting the excretion kinetics of 13C/12C and 18O/16O isotope ratios of exhaled breath CO2 in response to an oral dose of 13C-enriched glucose in individuals with T2D and non-diabetic controls (NDC) harbouring the H. pylori infection. Using a high-resolution integrated cavity output spectroscopy (ICOS) technique in the infrared region, we observed that the isotopic fractionations of 13C and 18O in breath CO2 are distinctly altered in H. pylori infected T2D patients as well as in H. pylori infected NDC. Several optimal diagnostic cut-off points of 13C and 18O isotopes of breath CO2 were also determined which exhibited the diagnostic sensitivity and specificity of ∼97 % and thus suggesting that breath 13C and 18O isotopes might be considered as potential biomarkers for the non-invasive assessment of the gastric pathogen prior to the onset of T2D. This may open a new diagnostic strategy for treating these common diseases in an alternative way.


Subject(s)
Breath Tests/methods , Carbon Isotopes/analysis , Diabetes Mellitus, Type 2/diagnosis , Helicobacter Infections/diagnosis , Oxygen Isotopes/analysis , Adult , Biomarkers/analysis , Female , Helicobacter pylori/physiology , Humans , Kinetics , Male , Middle Aged
18.
J Breath Res ; 12(3): 036019, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29560929

ABSTRACT

The underlying mechanisms towards the progression of end-stage renal disease (ESRD) in chronic kidney disease (CKD) are poorly understood and it still remains a major clinical stumbling block for early detection of CKD. Most patients with CKD pass through ESRD with the necessity of frequent hemodialysis (HD) treatment. At present, plasma urea and creatinine levels are examined in most CKD patients to monitor their health status after dialysis. But it is impossible to get immediate feedback on the patients' health as the conventional tests involve the collection of blood samples, laboratory processing for a prolonged period of time and, finally, analysis of those samples. However, the test results are very important in deciding the treatment plan for those ESRD patients. Here, we show that the enzymatic activity of carbonic anhydrase in erythrocytes is distinctly altered in ESRD subjects under HD. This, in turn, leads to the isotopic enrichments of oxygen-18 (18O) and carbon-13 (13C) of CO2 during respiration in HD treatment. High-resolution cavity-enhanced absorption spectroscopic measurements show that 18O and 13C-isotopic fractionations of breath CO2 are correlated with Kt/V values, suggesting a novel unifying strategy for ESRD patients that can be used as an isotope-specific methodology for non-invasive assessment of dialysis adequacy and hence 12C18O16O and 13C16O16O could be used as novel markers for tracking the physiological parameters of ESRD individuals. Our findings suggest that the monitoring of 18O and 13C isotopes of breath CO2 may facilitate the proper management of advanced CKD patients. The primary advantage of this isotopic breath test is that it may reduce the valuable time lag between the completion of dialysis and obtaining the clinical report on the status of patients' health.


Subject(s)
Breath Tests/methods , Carbon Isotopes/chemistry , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/etiology , Oxygen Isotopes/chemistry , Renal Dialysis/adverse effects , Adult , Aged , Chemical Fractionation , Creatinine/blood , Female , Humans , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/therapy , Male , Middle Aged , Urea/blood
19.
J Breath Res ; 12(2): 026005, 2018 01 09.
Article in English | MEDLINE | ID: mdl-28947681

ABSTRACT

Nitric oxide (NO) plays a key role in the development of peptic ulcer disease (PUD). Conversely, the gastric pathogen Helicobacter pylori colonizes the human stomach and contributes to the development of non-ulcer dyspepsia (NUD) and PUD. However, the underlying relation between molecular NO in exhaled breath and H. pylori-associated NUD and PUD remains largely unknown. Here, we found that the excretion kinetics of NO profiles in exhaled breath are altered markedly in H. pylori-infected NUD and PUD subjects. In our observations, PUD led to considerably higher enrichments of NO in exhaled breath compared to NUD, thus revealing a potential link between exhaled NO and ulcer and non-ulcer complications. Our findings therefore suggest that molecular NO in exhaled breath could be used as a potential biomarker for non-invasive diagnosis and selective differentiation of NUD from PUD. Our observations also highlight that alterations of NO in the gastric environment can play an important role in the pathogenesis of peptic ulcers and thus may provide a new strategy for precise evolution of the actual disease state without the need for endoscopic biopsy, even after the eradication of H. pylori infection.


Subject(s)
Dyspepsia/diagnosis , Exhalation , Nitric Oxide/analysis , Peptic Ulcer/diagnosis , Biomarkers/analysis , Breath Tests , Dyspepsia/complications , Helicobacter Infections/diagnosis , Helicobacter pylori/physiology , Humans , Kinetics , Peptic Ulcer/complications , ROC Curve , Reproducibility of Results
20.
Anal Chem ; 90(2): 1384-1387, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29244947

ABSTRACT

The oxygen-18 isotopic (18O) composition in CO2 provides an important insight into the variation of rate in isotopic fractionation reaction regulated by carbonic anydrase (CA) metalloenzyme. This work aims to employ an 18O-isotope ratio-based analytical method for quantitative estimation of CA activity in erythrocytes for clinical testing purposes. Here, a new method has been developed that contains the measurements of 18O/16O isotope ratios during oxygen-18 isotopic exchange between 12C16O16O and H218O of an in vitro biochemical reaction controlled by erythrocytes CA and estimation of enzymatic activity of CA from the isotopic composition of CO2. We studied the enrichments of 18O-isotope of CO2 with increments of CA activities during isotopic fractionation reaction. To check the influence of subject-specific body temperature, pH, H218O, and cellular produced CO2 on this reaction, we performed the in vitro experiments in closed containers with variations of those parameters. Finally, we mimicked the exchange reaction at 5% [CO2], 5‰ [H218O], pH of 7.4, and temperature of 37 °C to create the physiological environment equivalent to that of the human body and monitored the exchange kinetics with variations of CA activities, and subsequently, we derived the quantitative relation between the 18O-isotope of CO2 and CA activity in erythrocytes. This assay may be applicable for rapid and simple quantification of carbonic anhydrase activity which is very important to prevent the carbonic-anhydrase-associated disorders in human.


Subject(s)
Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Enzyme Assays/methods , Erythrocytes/enzymology , Oxygen Isotopes/analysis , Carbon Dioxide/chemistry , Enzyme Assays/instrumentation , Equipment Design , Humans , Oxygen Isotopes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...