Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2488, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30792502

ABSTRACT

We demonstrate a new guiding regime termed endlessly mono-radial, in the proposed annular core photonic crystal fiber (AC-PCF), whereby only modes of the fundamental radial order are supported by the fiber at all input wavelengths. This attribute is of high interest for applications that require the stable and broadband guiding of mono-radial (i.e. doughnut shaped) cylindrical vector beams and vortex beams carrying orbital angular momentum. We further show that one can significantly tailor the chromatic dispersion and optical nonlinearities of the waveguide through proper optimization of the photonic crystal microstructured cladding. The analytical investigation of the remarkable modal properties of the AC-PCF is validated by full-vector simulations. As an example, we performed simulations of the nonlinear fiber propagation of short femtosecond pulses at 835 nm center wavelength and kilowatt-level peak power, which indicate that the AC-PCF represents a promising avenue to investigate the supercontinuum generation of optical vortex light. The proposed fiber design has potential applications in space-division multiplexing, optical sensing and super-resolution microscopy.

2.
Med Eng Phys ; 48: 212-216, 2017 10.
Article in English | MEDLINE | ID: mdl-28687472

ABSTRACT

In vitro replication of traumatic spinal cord injury is necessary to understand its biomechanics and to improve animal models. During a traumatic spinal cord injury, the spinal cord withstands an impaction at high velocity. In order to fully assess the impaction, the use of spinal canal occlusion sensor is necessary. A physical spinal cord surrogate is also often used to simulate the presence of the spinal cord and its surrounding structures. In this study, an instrumented physical spinal cord surrogate is presented and validated. The sensing is based on light transmission loss observed in embedded bare optical fibers subjected to bending. The instrumented surrogate exhibits similar mechanical properties under static compression compared to fresh porcine spinal cords. The instrumented surrogate has a compression sensing threshold of 40% that matches the smallest compression values leading to neurological injuries. The signal obtained from the sensor allows calculating the compression of the spinal cord surrogate with a maximum of 5% deviation. Excellent repeatability was also observed under repetitive loading. The proposed instrumented spinal cord surrogate is promising with satisfying mechanical properties and good sensing capability. It is the first attempt at proposing a method to assess the internal loads sustained by the spinal cord during a traumatic injury.


Subject(s)
Optical Fibers , Spinal Cord , Compressive Strength , Feasibility Studies , Models, Anatomic , Printing, Three-Dimensional
3.
Sci Rep ; 7(1): 1552, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28484245

ABSTRACT

In this work, we demonstrate the measurement of the Brillouin gain spectra of vector modes in a few-mode fiber for the first time using a simple heterodyne detection technique. A tunable long period fiber grating is used to selectively excite the vector modes supported by the few-mode fiber. Further, we demonstrate the non-destructive measurement of the absolute effective refractive indices (n eff ) of vector modes with ~10-4 accuracy based on the acquired Brillouin frequency shifts of the modes. The proposed technique represents a new tool for probing and controlling vector modes as well as modes carrying orbital angular momentum in optical fibers with potential applications in advanced optical communications and multi-parameter fiber-optic sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...