Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Methods ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007760

ABSTRACT

Nanohybrid based non-invasive biosensing platforms are emerging as promising alternatives to detect biomarkers in complex and diverse bio-fluids toward ultrasensitive point-of-care diagnostics. Herein, we report the development of a highly sensitive, facile, non-invasive, label free, affordable, and innovative electrochemical screen printed immunosensor for identifying CYFRA 21-1, an established and crucial biomarker for oral cancer. Until now, no work has been reported utilizing a titanium carbide Ti3C2 MXene nanosheet and L-cysteine (L-Cyst) functionalized magnetite nanoparticle (MNPs) nanohybrid based immunosensor for electrochemical detection of CYFRA 21-1. The L-Cyst@MNPs/Ti3C2-MXene nanohybrid was synthesized via the co-precipitation method and later deposited on a gold screen printed electrode (GSPE) offering enhanced surface area and electrochemical properties. The nanohybrid modified GSPE was then surface immobilized with monoclonal antibodies (anti-CYFRA-21-1) to fabricate an anti-CYFRA-21-1/L-Cyst@MNPs/Ti3C2-MXene/GSPE immunoelectrode and the non-specific locations of the immunoelectrode were covered with bovine serum albumin (BSA). The spectroscopic, morphological, and structural analyses of the synthesized nanohybrid and the fabricated electrodes were performed using different analytical techniques. The electrochemical studies of modified electrodes were evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The fabricated BSA/anti-CYFRA-21-1/L-Cyst@MNPs/Ti3C2-MXene/GSPE immunosensor has shown an excellent limit of detection of 0.023 ng mL-1, a linear detection range of (0.5-30) ng mL-1, a sensitivity of 277.28 µA (ng mL-1)-1 cm-2 and a lower limit of quantification of 0.618 ng mL-1 for electrochemical CYFRA 21-1 determination. Hence, this L-Cyst@MNPs/Ti3C2-MXene nanohybrid could also be explored as a potential candidate for determining other cancer biomarkers.

2.
Int J Biol Macromol ; 253(Pt 6): 127260, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802449

ABSTRACT

Cancer is a significant health hazard worldwide and poses a greater threat to the quality of human life. Quantifying cancer biomarkers with high sensitivity has demonstrated considerable potential for compelling, quick, cost-effective, and minimally invasive early-stage cancer detection. In line with this, efforts have been made towards developing an f-graphene@Ti3C2-MXene nanohybrid thin-film-based electrochemical biosensing platform for efficient carcinoembryonic antigen (CEA) detection. The air-brush spray coating technique has been utilized for depositing the uniform thin films of amine functionalized graphene (f-graphene) and Ti3C2-MXene nanohybrid on ITO-coated glass substrate. The chemical bonding and morphological studies of the deposited nanohybrid thin films are characterized by advanced analytical tools, including XRD, XPS, and FESEM. The EDC-NHS chemistry is employed to immobilize the deposited thin films with monoclonal anti-CEA antibodies, followed by blocking the non-specific binding sites with BSA. The electrochemical response and optimization of biosensing parameters have been conducted using CV and DPV techniques. The optimized BSA/anti-CEA/f-graphene@Ti3C2-MXene immunoelectrode showed the ability to detect CEA biomarker from 0.01 pg mL-1 to 2000 ng mL-1 having a considerably lower detection limit of 0.30 pg mL-1.


Subject(s)
Biosensing Techniques , Graphite , Neoplasms , Humans , Biomarkers, Tumor , Carcinoembryonic Antigen/chemistry , Graphite/chemistry , Titanium/chemistry , Biosensing Techniques/methods , Electrochemical Techniques , Limit of Detection
3.
Int J Biol Macromol ; 242(Pt 4): 125157, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37257543

ABSTRACT

In the current scenario, the dominance of cancer is becoming a disastrous threat to mankind. Therefore, an advanced analytical approach is desired as the need of the hour for early diagnosis to curb the menace of cancer. In this context, the present work reports the development of nano surface energy transfer (NSET) based fluorescent immunosensor for carcinoembryonic antigen (CEA) detection utilizing protein functionalized graphene quantum dots (anti-CEA/amine-GQDs) and a nanocomposite of nanostructured gold and reduced graphene oxide (AuNPs@rGO) as energy donor-acceptor pair, respectively. The obtained AuNPs@rGO nanocomposite has been characterized by different advanced analytical techniques. The functionality of the biosensor depends on quenching the fluorescence of anti-CEA/amine-GQDs donor species by AuNPs@rGO acceptor species, followed by the gradual recovery of GQDs' fluorescence after CEA addition. The efficient energy transfer kinetics have been envisaged by utilizing the AuNPs@rGO nanocomposite as a dual-quencher nanoprobe that revealed improved energy transfer and quenching efficiency (∼62 %, 88 %) compared to AuNPs (∼43 %, 81 %) as a single quencher. Further, the developed biosensing platform successfully detected CEA biomarker with notable biosensing parameters, including a wider linear detection range (0.001-500 ng mL-1), fast response time (24 min), and a significantly low detection limit (0.35 pg mL-1).


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Gold , Carcinoembryonic Antigen , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Immunoassay/methods , Amines
4.
Sens Int ; 3: 100180, 2022.
Article in English | MEDLINE | ID: mdl-35601184

ABSTRACT

A major threat that has surrounded human civilization since the beginning of the year 2020 is the outbreak of coronavirus disease 2019 (COVID-19). It has been declared a pandemic by the World Health Organization and significantly affected populations globally, causing medical and economic despair. Healthcare chains across the globe have been under grave stress owing to shortages of medical equipments necessary to address a pandemic. Furthermore, personal protective equipment supplies, mandatory for healthcare staff for treating severely ill patients, have been in short supply. To address the necessary requisites during the pandemic, several researchers, hospitals, and industries collaborated to meet the demand for these medical equipments in an economically viable manner. In this context, 3D printing technologies have provided enormous potential in creating personalized healthcare equipment, including face masks, face shields, rapid detection kits, testing swabs, biosensors, and various ventilator components. This has been made possible by capitalizing on centralized large-scale manufacturing using 3D printing and local distribution of verified and tested computer-aided design files. The primary focus of this study is, "How 3D printing is helpful in developing these equipments, and how it can be helpful in the development and deployment of various sensing and point-of-care-testing (POCTs) devices for the commercialization?" Further, the present study also takes care of patient safety by implementing novel 3D printed health equipment used for COVID-19 patients. Moreover, the study helps identify and highlight the efforts made by various organizations toward the usage of 3D printing technologies, which are helpful in combating the ongoing pandemic.

5.
Sens Int ; 2: 100102, 2021.
Article in English | MEDLINE | ID: mdl-34766058

ABSTRACT

Coronavirus disease 2019 (COVID-19) is one of the worst pandemics to have hit the humanity. The manifestations are quite varied, ranging from severe lung infections to being asymptomatic. Hence, there is an urgent need to champion new tools to accelerate the end of this pandemic. Compromised immunity is a primary feature of COVID-19. Allium sativum (AS) is an effective dietary supplement known for its immune-modulatory, antibacterial, anti-inflammatory, anticancer, antifungal, and anti-viral properties. In this paper, it is hypothesized that carbon dots (CDs) derived from AS (AS-CDs) may possess the potential to downregulate the expression of pro-inflammatory cytokines and revert the immunological aberrations to normal in case of COVID-19. CDs have already been explored in the world of nanobiomedicine as a promising theranostic candidates for bioimaging and drug/gene delivery. The antifibrotic and antioxidant effects of AS are elaborated, as demonstrated in several studies. It is found that the most active constituent of AS, allicin has a highly potent antioxidant and reactive oxygen species (ROS) scavenging effect. The antibacterial, antifungal, and anti-viral effects along with their capability of negating inflammatory effects and cytokine storm are discussed. The synthesis of theranostic CDs from AS may provide a novel weapon in the therapeutic armamentarium for the management of COVID-19 infection and, at the same time, could act as a diagnostic agent for COVID-19.

6.
Biomed Microdevices ; 23(1): 9, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33449205

ABSTRACT

In this work, an optimized, non-invasive four electrode-based impedimetric sensors have been designed, fabricated, and characterized for measuring the impedance of a biological cell. The impedimetric sensors having four mono-polar electrodes were fabricated utilizing the photolithography technique with gold as the electrode material. Furthermore, the impedance of the electrolyte/electrode interface was simulated by optimizing different parameters, including applied voltage, PBS thickness, and diameter, using COMSOL Multiphysics software for a frequency range of 100 Hz to 1 MHz. Next, the impedance of the fabricated device was measured experimentally using the electrochemical impedance spectroscopy (EIS) technique. Then, the COMSOL data was equated with the impedance obtained from the fabricated devices to realize the feasibility and error percentage (RSE < 5%) of the sensor. The equivalent circuit model for the measured impedance data of PBS was obtained utilizing the ZsimpWin software. Besides, the mathematical relations between the impedance, phase angle and the area of the electrode were interpreted for the fabricated impedimetric sensors. Later on, a real blood sample was also characterized to demonstrate the feasibility and the validity of the proposed technique and the fabricated devices in cell diagnosis.


Subject(s)
Dielectric Spectroscopy , Gold , Electric Impedance , Electrodes
7.
RSC Adv ; 11(2): 798-806, 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-35423705

ABSTRACT

In the current study, novel four electrode-based impedimetric biosensors have been fabricated using photolithography techniques and utilized to evaluate the cytotoxicity of tamoxifen on cervical cancer cell lines. The cell impedance was measured employing the electric cell-substrate impedance sensing (ECIS) method over the frequency range of 100 Hz to 1 MHz. The results obtained from impedimetric biosensors indicate that tamoxifen caused a significant reduction in the number of HeLa cells on the electrode surfaces in a dose-dependent manner. Next, the impedance values recorded by the fabricated biosensors have been compared with the results obtained from the different conventional techniques such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live-dead cell assay, and flow cytometric analysis to estimate the cytotoxicity of tamoxifen. The impedimetric cytotoxicity of tamoxifen over the growth and proliferation of HeLa cells correlates well with the traditional methods. In addition, the IC50 values obtained from impedimetric data and MTT assay are comparable, signifying that the ECIS technique can be an alternative method to assess the cytotoxicity of different novel drugs. The working principle of the biosensor has been examined by scanning electron microscopy, indicating the detachment of cells from gold surfaces in a dose-dependent manner, signifying the decrease in impedance at higher drug doses.

8.
ACS Appl Bio Mater ; 3(8): 4922-4932, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-35021736

ABSTRACT

Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL-1 to 1000 ng mL-1), and remarkably low detection limit (0.09 pg mL-1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%.

9.
Sci Rep ; 8(1): 8503, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29844339

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

10.
Sci Rep ; 7(1): 11385, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900219

ABSTRACT

The conventional techniques to detect circulating tumour cells (CTCs) are lengthy and the use of centrifugal forces in this technique may cause cell mortality. As the number of CTCs in patients is quite low, the present study aims towards a gentler diagnostic procedure so as not to lose too many CTCs during the sample preparation process. Hence, a Three-Dimensional Microwell dialysis (3D-µDialysis) chip was designed in this study to perform gentle fluorescence-removal process by using dialysis-type flow processes without centrifuging. This leads to a minimum manual handling of CTCs obtained in our study without any contamination. In addition, a rapid staining process which necessitates only about half the time of conventional techniques (35 minutes instead of 90 minutes) is being illustrated by the employment of dialysis process (by dynamically removing water and waste at once) instead of only static diffusion (by statically removing only waste by diffusion). Staining efficiency of our technique is improved over conventional staining because of the flow rate in 3D-µDialysis staining. Moreover, the staining process has been validated with clinical whole blood samples from three TNM stage IV colon cancer patients. The current technique may be termed as "miniature rapid staining and dialysing system".


Subject(s)
Lab-On-A-Chip Devices , Microdialysis/methods , Microfluidic Analytical Techniques , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Cell Line, Tumor , Equipment Design , Humans , Microdialysis/instrumentation , Staining and Labeling
11.
Biosens Bioelectron ; 55: 44-50, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24361421

ABSTRACT

The present work reports the impedance characteristics of MCF-7 cell lines treated with anticancer drug ZD6474 to evaluate the cytotoxic effect on cellular electrical behaviour using miniature impedance sensors. Four types of impedance sensing devices with different electrode geometries are fabricated by microfabrication technology. The frequency response characteristics of drug treated cells are studied to evaluate cytotoxic effect of ZD6474 and also to assess the frequency dependent sensitivity variation with electrode area. A significant variation in magnitude of measured impedance data is obtained for drug treated samples above 10 µM dose indicating prominent effect of ZD6474 which results in suppression of cell proliferation and induction of apoptosis process. The results obtained by impedimetric method are correlated well with conventional in vitro assays such as flow cytometry, cell viability assays and microscopic imaging. Finally an empirical relation between cell impedance, electrode area and drug dose is established from impedance data which exhibits a negative correlation between drug doses and impedance of cancer cells.


Subject(s)
Biological Assay/instrumentation , Biosensing Techniques/instrumentation , Breast Neoplasms/drug therapy , Breast Neoplasms/physiopathology , Dielectric Spectroscopy/instrumentation , Drug Evaluation, Preclinical/instrumentation , Piperidines/administration & dosage , Quinazolines/administration & dosage , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Breast Neoplasms/diagnosis , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Equipment Design , Equipment Failure Analysis , Female , Humans , MCF-7 Cells , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...