Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(7): e09868, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35847617

ABSTRACT

Immunotherapeutic strategies against visceral leishmaniasis (VL) are pertinent because of the emergence of resistance against existing chemotherapy, coupled with their toxicity and high costs. Various bioactive components with potential immunomodulatory activity, such as alkaloids, terpenes, saponins, flavonoids obtained primarily from medicinal plants, have been screened against different disease models. Reports suggested that glycans containing terminal ß-galactose can skew host immune response towards Th1 by engaging TLRs. In this study, two synthesized terminal galactose-containing flavones, Quercetin 3-d-galactoside (Q-gal) and Kaempferol 3-O-d-galactoside (K-gal), are profiled in terms of inducing host protective Th1 response in both in vitro & in vivo animal models of experimental VL individually against antimony-resistant & antimony-susceptible Leishmania donovani. Further, we explored that both Q-gal and K-gal induce TLR4 mediated Th1 response to encounter VL. Molecular docking analysis also suggested strong interaction with TLR4 for both the galactosides, with a slightly better binding potential towards Q-gal. Treatment with both Q-gal and K-gal showed significant antileishmanial efficacy. Each considerably diminished the liver and splenic parasite burden 60 days after post-infection (>90% in AG83 infected mice and >87% in GE1F8R infected mice) when administered at a 5 mg/kg/day body-weight dose for ten consecutive days. However, the treatments failed to clear the parasites in the TLR4 deficient C3H/HeJ mice. Treatment with these compounds favors the elevation of TLR4 dependent host protective Th1 cytokines and suppression of disease-promoting IL-10. Q-gal and K-gal also triggered sufficient ROS generation in macrophages to kill intracellular parasites directly.

2.
Parasite Immunol ; 43(7): e12835, 2021 07.
Article in English | MEDLINE | ID: mdl-33756007

ABSTRACT

Hampering-surface presentation of immunogenic peptides by class I/II MHCs is a key strategy opted by several intracellular protozoan pathogens including Leishmania to escape CD8/CD4 mediated host-protective T-cell response. Although Leishmania parasites (LP) primarily hijack/inhibit host lysosomal/proteasomal pathways to hamper antigen-processing/presentation machinery, recent pieces of evidence have linked host-membrane fluidity as a major cause of defective antigen presentation in leishmaniasis. Increased membrane fluidity severely compromised peptide-MHC stability in the lipid raft regions, thereby abrogating T-cell mediated-signalling in the infected host. LP primarily achieves this by quenching host cholesterol, which acts as cementing material in maintaining the membrane fluidity. In this review, we have particularly focused on several strategies opted by LP to hijack-host cholesterol resulting in lipid droplets accumulation around leishmania-containing parasitophorous vacuole favouring intracellular survival of LP. In fact, LP infection can result in altered cholesterol and lipid metabolism in the infected host, thereby favouring the establishment and progression of the infection. From our analysis of two genome-wide transcriptomics data sets of LP infected host, we propose a possible molecular network that connects these interrelated events of altered lipid metabolism with eventual compromised antigen presentation, still existing as a gap in our current understanding of Leishmania infection.


Subject(s)
Leishmania , Leishmaniasis , Antigen Presentation , Humans , Macrophages , Membrane Fluidity
3.
Front Cell Infect Microbiol ; 10: 595415, 2020.
Article in English | MEDLINE | ID: mdl-33240825

ABSTRACT

Previously we have shown that long term oral treatment of tricyclic-antidepressant-drug, imipramine, against experimental visceral leishmaniasis, results in clearance of organ parasites, regardless of input infection, either with antimony-sensitive (SbS) or antimony-resistant (SbR) Leishmania donovani (LD) clinical isolates. Although continuous imipramine monotherapy for 28 days (5 mg/kg) results in significant clearance of organ parasites in both SbR and SbSLD infected hamsters, the dose for the sterile parasite clearance from visceral organ is comparatively higher (10 mg/kg) and shows signs of toxicity. Hence, to reduce the toxicity, we encapsulated imipramine in squalene-phosphatidylcholine (SP) liposome (Lip-Imi) and tested its efficacy for a short-course treatment (10 days) in the animal model of visceral leishmaniasis. We observed a significant reduction of hepatic toxicity coupled with sterile parasite clearance in case of this short-course treatment of Lip-Imi, which is absent with free Imi treatment. This also correlates with significant increase in serum availability of imipramine in case of Lip-Imi treatment due to sustained release. Clearance of parasite was coupled with the polarization of antileishmanial immune repertoire from Th2 to Th1 after treatment with Lip-Imi in both SbRLD and SbSLD infected mouse models of LD infection. This study showed that imipramine is effective against both SbSLD and SbRLD at a significantly lower dose with reduced time course of treatment without any toxic side effects, when encapsulated in SP-liposome. Thus, the drug has the potential to be repurposed for the treatment of Kala-azar.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Animals , Antimony , Cricetinae , Drug Resistance , Imipramine , Leishmaniasis, Visceral/drug therapy , Liposomes , Mice , Mice, Inbred BALB C , Squalene
SELECTION OF CITATIONS
SEARCH DETAIL
...