Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
2.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121012

ABSTRACT

Multifunctional micro- and nanoparticles have potential uses in advanced detection methods, such as the combined separation and detection of biomolecules. Combining multiple tasks is possible but requires the specific tailoring of these particles during synthesis or further functionalization. Here, we synthesized nanostructured gold shells on magnetic particle cores and demonstrated the use of them in surface-enhanced Raman scattering (SERS). To grow the gold shells, gold seeds were bound to silica-coated iron oxide aggregate particles. We explored different functional groups on the surface to achieve different interactions with gold seeds. Then, we used an aqueous cetyltrimethylammonium bromide (CTAB)-based strategy to grow the seeds into spikes. We investigated the influence of the surface chemistry on seed attachment and on further growth of spikes. We also explored different experimental conditions to achieve either spiky or bumpy plasmonic structures on the particles. We demonstrated that the particles showed SERS enhancement of a model Raman probe molecule, 2-mercaptopyrimidine, on the order of 104. We also investigated the impact of gold shell morphology-spiky or bumpy-on SERS enhancements and on particle stability over time. We found that spiky shells lead to greater enhancements, however their high aspect ratio structures are less stable and morphological changes occur more quickly than observed with bumpy shells.

3.
Talanta ; 182: 259-266, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29501150

ABSTRACT

Combined separation and detection of biomolecules has the potential to speed up and improve the sensitivity of disease detection, environmental testing, and biomolecular analysis. In this work, we synthesized magnetic particles coated with spiky nanostructured gold shells and used them to magnetically separate out and detect oligonucleotides using SERS. The distance dependence of the SERS signal was then harnessed to detect DNA hybridization using a Raman label bound to a hairpin probe. The distance of the Raman label from the surface increased upon complementary DNA hybridization, leading to a decrease in signal intensity. This work demonstrates the use of the particles for combined separation and detection of oligonucleotides without the use of an extrinsic tag or secondary hybridization step.


Subject(s)
Biosensing Techniques , DNA, Single-Stranded/analysis , DNA/analysis , Magnetite Nanoparticles/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman/standards , Chlorides/chemistry , DNA Probes/chemical synthesis , DNA Probes/chemistry , Ferric Compounds/chemistry , Gold/chemistry , Humans , Inverted Repeat Sequences , Magnetite Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Sensitivity and Specificity , Silicon Dioxide/chemistry , Solutions
8.
Colloids Surf B Biointerfaces ; 157: 325-334, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28609707

ABSTRACT

Sophorolipids are bioderived glycolipids displaying interesting antimicrobial properties. We show that they can be used to develop biocidal monolayers against Listeria ivanovii, a Gram-positive bacterium. The present work points out the dependence between the surface density and the antibacterial activity of grafted sophorolipids. It also emphasizes the broad spectrum of activity of these coatings, demonstrating their potential against both Gram-positive strains (Enteroccocus faecalis, Staphylococcus epidermidis, Streptococcus pyogenes) and Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhymurium). After exposure to sophorolipids grafted onto gold, all these bacterial strains show a significant reduction in viability resulting from membrane damage as evidenced by fluorescent labelling and SEM-FEG analysis.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Glycolipids/chemistry , Gold/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Salmonella typhimurium/drug effects , Streptococcus pyogenes/drug effects
9.
Langmuir ; 32(51): 13759-13763, 2016 12 27.
Article in English | MEDLINE | ID: mdl-28024396

ABSTRACT

By changing the ultrahigh vacuum (UHV) deposition method, classical sublimation versus electrospray ionization, one can tune the chemistry of a chiral dipeptide molecule (Gly-Pro, GP), when adsorbed on a Cu(110) surface, from anionic to zwitterionic. This chemical shift will influence the adsorption mode of the dipeptide, either in a three-point fashion in the case of anionic GP molecules with a strong interaction among the copper surface, both O atoms of the carboxylate moiety, and the nitrogen atoms, or in the case of zwitterions GP, the adsorption mode relies on the sole interaction of one carboxylate oxygen atom. These different anchoring modes strongly modify the expression of surface 2D chirality and the supramolecular assemblies with two very distinct unit cells.


Subject(s)
Copper , Dipeptides/chemistry , Adsorption , Stereoisomerism
10.
Colloids Surf B Biointerfaces ; 136: 1120-30, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26613864

ABSTRACT

Adhesion of proteins and bacteria was reduced by a factor close to one order of magnitude, and adhered bacteria were dramatically damaged on copper surfaces by grafting a PEG-modified PMMA-based (polymethyl methacrylate) copolymer together with an antimicrobial peptide. To obtain PEG and a peptide grafted together on the surface, a UV sensitive copolymer (containing PMMA, PEG and a UV sensitive reagent) was primary synthesized and deposited. After selective UV irradiation of this copolymer layer, an antimicrobial peptide, Magainin I, was grafted onto freed-polymer coated-copper surface via a spacer molecule (a mercapto carboxylic acid). The functionalization was characterized at each step by Polarization Modulation Reflection Absorption Infrared Spectroscopy (PM-RAIRS). The antiadhesive properties of the copolymer layer and antibacterial activity of the anchored Magainin I, were individually tested toward adsorption of bovine serum albumin (BSA) proteins, and against Gram positive bacteria, Listeria ivanovii, respectively. The results revealed that adhesion of both proteins and bacteria has been considerably reduced; moreover, the peptide still displays some antimicrobial activity after grafting. This work gives new ideas and perspectives to elaborate complex surface coatings where several agents are needed like for anti-biofilm or sensing applications.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Adhesion/drug effects , Copper/chemistry , Ultraviolet Rays , Microscopy, Atomic Force , Photoelectron Spectroscopy , Surface Properties
11.
Colloids Surf B Biointerfaces ; 136: 214-21, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26402419

ABSTRACT

We report a simple and original method to synthesize gold nanoparticles in which a fungal protein, the hydrophobin Vmh2 from Pleurotus ostreatus and dicarboxylic acid-terminated polyethylene-glycol (PEG) has been used as additional components in a one step process, leading to hybrid protein-metal nanoparticles (NPs). The nanoparticles have been characterized by ultra-violet/visible, infrared and X-ray photoelectron spectroscopies, dynamic light scattering and also by electron microscopy imaging. The results of these analytical techniques highlight nanometric sized, stable, hybrid complexes of about 12 nm, with outer surface rich in functional chemical groups. Interaction with protein and antibodies has also been exploited.


Subject(s)
Fungal Proteins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Polyethylene Glycols/chemistry , Spectrum Analysis
12.
ACS Appl Mater Interfaces ; 7(32): 18086-95, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26247605

ABSTRACT

Classical antibacterial surfaces usually involve antiadhesive and/or biocidal strategies. Glycosylated surfaces are usually used to prevent biofilm formation via antiadhesive mechanisms. We report here the first example of a glycosylated surface with biocidal properties created by the covalent grafting of sophorolipids (a sophorose unit linked by a glycosidic bond to an oleic acid) through a self-assembled monolayer (SAM) of short aminothiols on gold (111) surfaces. The biocidal effect of such surfaces on Gram+ bacteria was assessed by a wide combination of techniques including microscopy observations, fluorescent staining, and bacterial growth tests. About 50% of the bacteria are killed via alteration of the cell envelope. In addition, the roles of the sophorose unit and aliphatic chain configuration are highlighted by the lack of activity of substrates modified, respectively, with sophorose-free oleic acid and sophorolipid-derivative having a saturated aliphatic chain. This system demonstrates thus the direct implication of a carbohydrate in the destabilization and disruption of the bacterial cell envelope.


Subject(s)
Anti-Bacterial Agents/chemistry , Gold/chemistry , Actinobacteria/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Glycosylation , Humans , Listeria , Microbial Sensitivity Tests , Microscopy, Atomic Force , Oleic Acid/chemistry , Spectrophotometry, Infrared , Sulfhydryl Compounds/chemistry , Surface Properties
13.
Chemistry ; 21(41): 14555-61, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26285049

ABSTRACT

Despite the numerous studies on the self-assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol-gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X-ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol-gold interface. The long-chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short-chain alkylthiol SAMs were adsorbed more strongly than long-chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol-gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single-molecule adsorption than self-assembly, whereas for long chains, interactions between alkyl chains drive the system to self-assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur-gold interface.

14.
Chirality ; 27(7): 411-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25847844

ABSTRACT

The adsorption of chiral Gly-Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly-Pro molecules are present on Cu(110) in their anionic form (NH2 /COO(-)) and adsorb under a 3-point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H-bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface.


Subject(s)
Copper/chemistry , Dipeptides/chemistry , Electrons , Microscopy, Scanning Tunneling/methods , Photoelectron Spectroscopy/methods , Spectrophotometry, Infrared/methods , Stereoisomerism , Surface Properties
15.
J Pept Sci ; 20(7): 563-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24919960

ABSTRACT

Development of resistant bacteria onto biomaterials is a major problem leading to nosocomial infections. Antimicrobial peptides are good candidates for the generation of antimicrobial surfaces because of their broad-spectrum activity and their original mechanism of action (i.e. rapid lysis of the bacterial membrane) making them less susceptible to the development of bacterial resistance. In this study, we report on the covalent immobilisation of temporin-SHa on a gold surface modified by a thiolated self-assembled monolayer. Temporin-SHa (FLSGIVGMLGKLF amide) is a small hydrophobic and low cationic antimicrobial peptide with potent and very broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts and parasites. We have analysed the influence of the binding mode of temporin-SHa on the antibacterial efficiency by using a covalent binding either via the peptide NH2 groups (random grafting of α- and ε-NH2 to the surface) or via its C-terminal end (oriented grafting using the analogue temporin-SHa-COOH). The surface functionalization was characterised by IR spectroscopy (polarisation modulation reflection absorption IR spectroscopy) while antibacterial activity against Listeria ivanovii was assessed by microscopy techniques, such as atomic force microscopy and scanning electron microscopy equipped with a field emission gun. Our results revealed that temporin-SHa retains its antimicrobial activity after covalent grafting. A higher amount of bound temporin-SHa is observed for the C-terminally oriented grafting compared with the random grafting (NH2 groups). Temporin-SHa therefore represents an attractive candidate as antimicrobial coating agent.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Listeria/drug effects , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Surface Properties
16.
Colloids Surf B Biointerfaces ; 116: 489-96, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24561503

ABSTRACT

Controlled immobilization of proteins is crucial in many applications, including biosensors. Allergen biosensing, for example, requires molecular recognition of suitably immobilized proteins by specific antibodies and sensitive measurement of this interaction. Self-assembled monolayers (SAMs), terminated by active functions, and are of great interest for the immobilization of biomolecules. The efficiency of further biorecognition involving molecules immobilized on these surfaces demonstrates an interesting dependence on the chain length and terminal function of the SAM. This motivated us to investigate adsorption of two proteins both known as milk allergens-ß-lactoglobulin and apo-transferrin-on amine-terminated SAMs. We varied the chain length by using either short or long chain amine-terminated thiols (cysteamine, CEA, and 11-mercaptoundecylamine, MUAM). We also investigated the influence of the addition of a rigid cross-linker, p-phenylene diisothiocyanate (PDITC), to these amine layers prior to protein adsorption. Protein binding was studied using polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) and atomic force microscopy (AFM) to characterize their amount and dispersion. We found that protein immobilization varies with SAM chain length and is also influenced by the presence of a cross-linker. The presence of a rigid cross-linker favours the binding of proteins on long chain SAMs, while the effect is almost nonexistent on shorter chains. In addition, the presence of the cross-linker induces a better dispersion of the proteins on the surfaces, regardless of the length of the thiols forming the SAMs. The effects of chain length and chemistry of protein binding are discussed.


Subject(s)
Apoproteins/chemistry , Gold/chemistry , Lactoglobulins/chemistry , Transferrin/chemistry , Adsorption , Amines/chemistry , Molecular Structure , Particle Size , Sulfhydryl Compounds/chemistry , Surface Properties
17.
Langmuir ; 30(1): 203-12, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24325337

ABSTRACT

A combination of XPS, in situ RAIRS, LEED, and STM experiments together with ab initio DFT calculations were used to elucidate the self-assembly properties at the atomic level, and enabled the interpretation of the expression of surface chirality upon adsorption of both enantiomers of methionine on a clean Au(111) surface under UHV conditions. The combination of experimental results, in particular, LEED and STM data with quantum chemical calculations is shown to be a successful setup strategy for addressing this challenge. It was found that the methionine molecular self-assembly consists of the first molecule lying parallel to the gold surface and the second interacting with the first methionine through a 2D H-bond network. The interaction with the gold surface is weak. The stability of the assembly is mainly due to the presence of intermolecular H bonds, resulting in the formation of ziplike dimer rows on the Au(111) surface. The methionine molecules interact with each other via their amino acid functional groups. The assembly shows an asymmetric pattern due to a slightly different orientation of the methionine molecules with respect to the surface. Simulations of the STM image of methionine assemblies were consistent with the experimental STM image. The present study shows another example of Au(111) stabilizing a self-assembled biological layer, which is not chemically perturbed by the surface.


Subject(s)
Gold/chemistry , Methionine/chemical synthesis , Methionine/chemistry , Particle Size , Quantum Theory , Stereoisomerism , Surface Properties
18.
Analyst ; 139(1): 157-64, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24225546

ABSTRACT

We show in this article that doxorubicin-modified gold nanoparticles (Au NP-DOX) can be used for the post-amplification of the wavelength shift of localized surface plasmon resonance (LSPR) signals after DNA hybridization events. We take advantage of the intercalation properties of DOX with guanine-rich oligonucleotides and the plasmon coupling between surface-linked gold nanostructures and Au NP-DOX in solution to detect in a sensitive manner DNA hybridisation events. Post-treatment of double-stranded DNA with Au NP-DOX resulted in a detection limit of ≈600 pM, several times lower than that without post-incubation (LOD ≈ 40 nM).


Subject(s)
DNA Probes/chemistry , Doxorubicin/chemistry , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Surface Plasmon Resonance/methods
19.
Chemphyschem ; 14(11): 2462-9, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23821481

ABSTRACT

The mechanism of interaction of Zn porphyrin (ZnPP) with TiO2 surfaces is investigated with a view to optimizing the synthesis of hybrid nanomaterials. The strategy consists of studying the adsorption of ZnPP on TiO2 flat surfaces by taking advantage of complementary surface characterization techniques. Combining a detailed X-ray photoelectron spectroscopic analysis with AFM imaging allows ZnPP-surface and ZnPP intermolecular interactions to be discriminated. Probing the adsorption of ZnPP on TiO2 nanoparticles (NPs) reveals the dominant role of ZnPP-mediated interactions, which are associated with the formation of ZnPP multilayers and/or with the state of aggregation of NPs. These preliminary investigations provide a guideline to synthesizing a novel ZnPP-TiO2 hybrid nanomaterial in a one-step protocol. In this material, ZnPP molecules are presumably involved in the TiO2 lattice rather than on the NP surface. Furthermore, ZnPP molecules preserve their electronic properties within the TiO2 NPs, and this makes the ZnPP-TiO2 hybrid nanomaterial an excellent candidate for nanomedicine and related applications, such as localization of nanoparticles in cells and tissues or in photodynamic therapy.


Subject(s)
Coordination Complexes/chemical synthesis , Nanoparticles/chemistry , Porphyrins/chemistry , Titanium/chemistry , Zinc/chemistry , Adsorption , Cations, Divalent , Microscopy, Atomic Force , Nanoparticles/ultrastructure , Photoelectron Spectroscopy
20.
Phys Chem Chem Phys ; 15(31): 12911-9, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23812282

ABSTRACT

Functionalized silica-based thin films, modified with hydrophobic groups, were synthesized and used as sensors for nitroaromatic compound (NAC) specific detection. Their performance and behavior, in terms of stability, ageing and regeneration, have been fully characterized by combining chemical characterization techniques and electron microscopy. NAC was efficiently and specifically detected using these silica-based sensors, but showed a great degradation in the presence of humidity. Moreover, the sensor sensitivity seriously decreases with storage time. Methyl- and phenyl-functionalization helped to overcome this humidity sensitivity. Surface characterization enabled us to establish a direct correlation between the appearance, and increasing amount, of adsorbed carbonyl-containing species, and sensor efficiency. This contamination, appearing after only one month, was particularly important when sensors were stored in plastic containers. Rinsing with cyclohexane enables us to recover part of the sensor performance but does not yield a complete regeneration of the sensors. This work led us to the definition of optimized elaboration and storage conditions for nitroaromatic sensors.


Subject(s)
Nitrobenzenes/analysis , Silicon Dioxide/chemistry , Particle Size , Silicon Dioxide/chemical synthesis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...