Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 7(4): 252-261, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37475751

ABSTRACT

Genotypes exhibiting an increased mutation rate, called hypermutators, can propagate in microbial populations because they can have an advantage due to the higher supply of beneficial mutations needed for adaptation. Although this is a frequently observed phenomenon in natural and laboratory populations, little is known about the influence of parameters such as the degree of maladaptation, stress intensity, and the genetic architecture for adaptation on the emergence of hypermutators. To address this knowledge gap, we measured the emergence of hypermutators over ~1,000 generations in experimental Escherichia coli populations exposed to different levels of osmotic or antibiotic stress. Our stress types were chosen based on the assumption that the genetic architecture for adaptation differs between them. Indeed, we show that the size of the genetic basis for adaptation is larger for osmotic stress compared to antibiotic stress. During our experiment, we observed an increased emergence of hypermutators in populations exposed to osmotic stress but not in those exposed to antibiotic stress, indicating that hypermutator emergence rates are stress type dependent. These results support our hypothesis that hypermutator emergence is linked to the size of the genetic basis for adaptation. In addition, we identified other parameters that covaried with stress type (stress level and IS transposition rates) that might have contributed to an increased hypermutator provision and selection. Our results provide a first comparison of hypermutator emergence rates under varying stress conditions and point towards complex interactions of multiple stress-related factors on the evolution of mutation rates.

2.
Elife ; 122023 02 14.
Article in English | MEDLINE | ID: mdl-36785930

ABSTRACT

Antibiotic consumption and its abuses have been historically and repeatedly pointed out as the major driver of antibiotic resistance emergence and propagation. However, several examples show that resistance may persist despite substantial reductions in antibiotic use, and that other factors are at stake. Here, we study the temporal, spatial, and ecological distribution patterns of aminoglycoside resistance, by screening more than 160,000 publicly available genomes for 27 clusters of genes encoding aminoglycoside-modifying enzymes (AME genes). We find that AME genes display a very ubiquitous pattern: about 25% of sequenced bacteria carry AME genes. These bacteria were sequenced from all the continents (except Antarctica) and terrestrial biomes, and belong to a wide number of phyla. By focusing on European countries between 1997 and 2018, we show that aminoglycoside consumption has little impact on the prevalence of AME-gene-carrying bacteria, whereas most variation in prevalence is observed among biomes. We further analyze the resemblance of resistome compositions across biomes: soil, wildlife, and human samples appear to be central to understand the exchanges of AME genes between different ecological contexts. Together, these results support the idea that interventional strategies based on reducing antibiotic use should be complemented by a stronger control of exchanges, especially between ecosystems.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Humans , Anti-Bacterial Agents/pharmacology , Aminoglycosides/pharmacology , Ecosystem , Drug Resistance, Bacterial/genetics , Europe , Microbial Sensitivity Tests
3.
BMC Bioinformatics ; 22(1): 349, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174810

ABSTRACT

BACKGROUND: Plasmids are mobile genetic elements that often carry accessory genes, and are vectors for horizontal transfer between bacterial genomes. Plasmid detection in large genomic datasets is crucial to analyze their spread and quantify their role in bacteria adaptation and particularly in antibiotic resistance propagation. Bioinformatics methods have been developed to detect plasmids. However, they suffer from low sensitivity (i.e., most plasmids remain undetected) or low precision (i.e., these methods identify chromosomes as plasmids), and are overall not adapted to identify plasmids in whole genomes that are not fully assembled (contigs and scaffolds). RESULTS: We developed PlasForest, a homology-based random forest classifier identifying bacterial plasmid sequences in partially assembled genomes. Without knowing the taxonomical origin of the samples, PlasForest identifies contigs as plasmids or chromosomes with a F1 score of 0.950. Notably, it can detect 77.4% of plasmid contigs below 1 kb with 2.8% of false positives and 99.9% of plasmid contigs over 50 kb with 2.2% of false positives. CONCLUSIONS: PlasForest outperforms other currently available tools on genomic datasets by being both sensitive and precise. The performance of PlasForest on metagenomic assemblies are currently well below those of other k-mer-based methods, and we discuss how homology-based approaches could improve plasmid detection in such datasets.


Subject(s)
Genome, Bacterial , Genomics , Computational Biology , Metagenomics , Plasmids
4.
Genome Biol Evol ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-33944930

ABSTRACT

Protein coding genes can contain specific motifs within their nucleotide sequence that function as a signal for various biological pathways. The presence of such sequence motifs within a gene can have beneficial or detrimental effects on the phenotype and fitness of an organism, and this can lead to the enrichment or avoidance of this sequence motif. The degeneracy of the genetic code allows for the existence of alternative synonymous sequences that exclude or include these motifs, while keeping the encoded amino acid sequence intact. This implies that locally, there can be a selective pressure for preferentially using a codon over its synonymous alternative in order to avoid or enrich a specific sequence motif. This selective pressure could-in addition to mutation, drift and selection for translation efficiency and accuracy-contribute to shape the codon usage bias. In this review, we discuss patterns of avoidance of (or enrichment for) the various biological signals contained in specific nucleotide sequence motifs: transcription and translation initiation and termination signals, mRNA maturation signals, and antiviral immune system targets. Experimental data on the phenotypic or fitness effects of synonymous mutations in these sequence motifs confirm that they can be targets of local selection pressures on codon usage. We also formulate the hypothesis that transposable elements could have a similar impact on codon usage through their preferred integration sequences. Overall, selection on codon usage appears to be a combination of a global selection pressure imposed by the translation machinery, and a patchwork of local selection pressures related to biological signals contained in specific sequence motifs.


Subject(s)
Codon Usage , Silent Mutation , Codon/genetics , Genetic Code , Mutation , Selection, Genetic
5.
Evol Med Public Health ; 2020(1): 148-157, 2020.
Article in English | MEDLINE | ID: mdl-34254028

ABSTRACT

BACKGROUND AND OBJECTIVES: Antimicrobial resistance is a growing global concern and has spurred increasing efforts to find alternative therapeutics. Bacteriophage therapy has seen near constant use in Eastern Europe since its discovery over a century ago. One promising approach is to use phages that not only reduce bacterial pathogen loads but also select for phage resistance mechanisms that trade-off with antibiotic resistance-so called 'phage steering'. METHODOLOGY: Recent work has shown that the phage OMKO1 can interact with efflux pumps and in so doing select for both phage resistance and antibiotic sensitivity of the pathogenic bacterium Pseudomonas aeruginosa. We tested the robustness of this approach to three different antibiotics in vitro (tetracycline, erythromycin and ciprofloxacin) and one in vivo (erythromycin). RESULTS: We show that in vitro OMKO1 can reduce antibiotic resistance of P. aeruginosa (Washington PAO1) even in the presence of antibiotics, an effect still detectable after ca.70 bacterial generations in continuous culture with phage. Our in vivo experiment showed that phage both increased the survival times of wax moth larvae (Galleria mellonella) and increased bacterial sensitivity to erythromycin. This increased antibiotic sensitivity occurred both in lines with and without the antibiotic. CONCLUSIONS AND IMPLICATIONS: Our study supports a trade-off between antibiotic resistance and phage sensitivity. This trade-off was maintained over co-evolutionary time scales even under combined phage and antibiotic pressure. Similarly, OMKO1 maintained this trade-off in vivo, again under dual phage/antibiotic pressure. Our findings have implications for the future clinical use of steering in phage therapies. Lay Summary: Given the rise of antibiotic-resistant bacterial infection, new approaches to treatment are urgently needed. Bacteriophages (phages) are bacterial viruses. The use of such viruses to treat infections has been in near-continuous use in several countries since the early 1900s. Recent developments have shown that these viruses are not only effective against routine infections but can also target antibiotic resistant bacteria in a novel, unexpected way. Similar to other lytic phages, these so-called 'steering phages' kill the majority of bacteria directly. However, steering phages also leave behind bacterial variants that resist the phages, but are now sensitive to antibiotics. Treatment combinations of these phages and antibiotics can now be used to greater effect than either one independently. We evaluated the impact of steering using phage OMKO1 and a panel of three antibiotics on Pseudomonas aeruginosa, an important pathogen in hospital settings and in people with cystic fibrosis. Our findings indicate that OMKO1, either alone or in combination with antibiotics, maintains antibiotic sensitivity both in vitro and in vivo, giving hope that phage steering will be an effective treatment option against antibiotic-resistant bacteria.

6.
Philos Trans R Soc Lond B Biol Sci ; 374(1772): 20180097, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30905283

ABSTRACT

The durability of host resistance is challenged by the ability of pathogens to escape the defence of their hosts. Understanding the variability in the durability of host resistance is of paramount importance for designing more effective control strategies against infectious diseases. Here, we study the durability of various clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) alleles of the bacteria Streptococcus thermophilus against lytic phages. We found substantial variability in durability among different resistant bacteria. Since the escape of the phage is driven by a mutation in the phage sequence targeted by CRISPR-Cas, we explored the fitness costs associated with these escape mutations. We found that, on average, escape mutations decrease the fitness of the phage. Yet, the magnitude of this fitness cost does not predict the durability of CRISPR-Cas immunity. We contend that this variability in the durability of resistance may be because of variations in phage mutation rate or in the proportion of lethal mutations across the phage genome. These results have important implications on the coevolutionary dynamics between bacteria and phages and for the optimal deployment of resistance strategies against pathogens and pests. Understanding the durability of CRISPR-Cas immunity may also help develop more effective gene-drive strategies based on CRISPR-Cas9 technology. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.


Subject(s)
Adaptive Immunity/genetics , Bacteriophages/genetics , CRISPR-Cas Systems/immunology , Streptococcus thermophilus/immunology , Streptococcus thermophilus/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...