Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(20): 208002, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31809118

ABSTRACT

Active particles such as swimming bacteria or self-propelled colloids spontaneously self-organize into large-scale dynamic structures. The emergence of these collective states from the motility pattern of the individual particles, typically a random walk, is yet to be probed in a well-defined synthetic system. Here, we report the experimental realization of tunable colloidal motion that reproduces run-and-tumble and Lévy trajectories. We utilize the Quincke effect to achieve controlled sequences of repeated particle runs and random reorientations. We find that a population of these random walkers exhibit behaviors reminiscent of bacterial suspensions such as dynamic clusters and mesoscale turbulentlike flows.


Subject(s)
Colloids/chemistry , Models, Theoretical , Cluster Analysis , Motion
2.
Soft Matter ; 15(32): 6564-6570, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31360980

ABSTRACT

The Quincke effect is an electrohydrodynamic instability which gives rise to a torque on a dielectric particle in a uniform DC electric field. Previous studies reported that a sphere initially resting on the electrode rolls with steady velocity. We experimentally find that in strong fields the rolling becomes unsteady, with time-periodic velocity. Furthermore, we find another regime, where the rotating sphere levitates in the space between the electrodes. Our experimental results show that the onset of Quincke rotation strongly depends on particle confinement and the threshold for rolling is higher compared to rotation in the hovering state.

SELECTION OF CITATIONS
SEARCH DETAIL
...