Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502029

ABSTRACT

A tumor cell carrying characteristic genomic alteration(s) exists within its host's microenvironment. The tumor microenvironment (TME) renders holistic support to the tumor via cross-talk between tumor cells and three components of TME, immune components, vascular components, and fibroblast components. The tempero-spatial interaction of tumor cells with its microenvironment is the deterministic factor for tumor growth, progression, resistance to therapy, and its outcome in clinics. TME (1) facilitates proliferation, and the ensuing metastasis-associated phenotypes, (2) perturbs immune surveillance and supports tumor cells in their effort to evade immune recognition, and (3) actively participates in developing drug-induced resistance in cancer cells. Cancer-Associated Fibroblast (CAF) is a unique component of TME. CAF is the host mesenchyme immediately surrounding the tumor cells in solid tumors. It facilitates tumor growth and progression and participates in developing drug resistance in tumor cells by playing a critical role in all the ways mentioned above. The clinical outcome of a disease is thus critically contributed to by the CAF component of TME. Although CAFs have been identified historically, the functional relevance of CAF-tumor cell cross-talk and their influence on angiogenic and immune-components of TME are yet to be characterized in solid tumors, especially in endometrial cancers. Currently, the standard of care for the treatment of endometrial cancers is primarily guided by therapies directed towards the disease's tumor compartment and immune compartments. Unfortunately, in the current state of therapies, a complete response (CR) to the therapy is still limited despite a more commonly achieved partial response (PR) and stable disease (SD) in patients. Acknowledging the limitations of the current sets of therapies based on only the tumor and immune compartments of the disease, we sought to put forward this review based on the importance of the cross-talk between CAF of the tumor microenvironment and tumor cells. The premise of the review is to recognize the critical role of CAF in disease progression. This manuscript presents a systemic review of the role of CAF in endometrial cancers. We critically interrogated the active involvement of CAF in the tumor compartment of endometrial cancers. Here we present the functional characteristics of CAF in the context of endometrial cancers. We review (1) the characteristics of CAF, (2) their evolution from being anti-tumor to pro-tumor, (3) their involvement in regulating growth and several metastasis-associated phenotypes of tumor cells, (4) their participation in perturbing immune defense and evading immune surveillance, and (5) their role in mediating drug resistance via tumor-CAF cross-talk with particular reference to endometrial cancers. We interrogate the functional characteristics of CAF in the light of its dialogue with tumor cells and other components of TME towards developing a CAF-based strategy for precision therapy to supplement tumor-based therapy. The purpose of the review is to present a new vision and initiate a thought process which recognizes the importance of CAF in a tumor, thereby resulting in a novel approach to the design and management of the disease in endometrial cancers.


Subject(s)
Cancer-Associated Fibroblasts , Endometrial Neoplasms/physiopathology , Tumor Microenvironment , Endometrial Neoplasms/immunology , Female , Humans
2.
Pharmaceuticals (Basel) ; 14(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065837

ABSTRACT

Metastatic triple-negative breast cancer (TNBC) is a distinct and immensely complex form of breast cancer. Among all subtypes of breast cancers, TNBC has a comparatively high rate of relapse, a high rate of distant metastasis, and poor overall survival after standard chemotherapy. Chemotherapy regimens are an essential component of the management of this estrogen receptor-negative, progesterone receptor-negative, and epidermal growth factor receptor2 negative subtype of breast cancers. Chemotherapy is critical for preventing the recurrence of the disease and for achieving long-term survival. Currently, a couple of agents are approved for the management of this disease, including chemotherapy like eribulin, targeted therapy like PARP inhibitor, as well as an antibody-drug conjugate (ADC) to target TROP2. Like many other metastatic cancers, immune checkpoint inhibitors (ICIs) have also been approved for TNBC patients with PD-L1 positive tumors and high tumor mutational burden. In this review article, we discuss these newly approved and promising novel agents that may change the therapeutic landscape for advanced/metastatic TNBC patients.

3.
Am J Cancer Res ; 3(2): 173-95, 2013.
Article in English | MEDLINE | ID: mdl-23593540

ABSTRACT

Amplification of human Her2 and its aberrant signaling in 20-30% of early breast cancer patients is responsible for highly aggressive tumors with poor outcome. Grb7 is reported to be co-amplified with Her2. We report a concurrent high expression of mRNA (from FFPE tumor samples; mRNA correlation, Pearson r(2)= 0.806), and high levels of GRB7 protein (immunoblot) in HER2+ breast cancer cell lines. We demonstrated the signaling mechanism of HER2 and downstream effectors that contributes to proliferation and migration. Using HER2+ and trastuzumab-resistant breast cancer cell lines, we identified the interaction between GRB7 and HER2 in the control of HER2+ cell proliferation. Our co-IP data show that GRB7 recruits SHC into the HER2-GRB7 signaling complex. This complex formation leads to activation of RAS-GTP. We also observed that following integrin engagement, GRB7 is phosphorylated at tyrosine in a p-FAK (Y397) dependent manner. This FAK-GRB7 complex leads to downstream activation of RAC1-GTP (responsible for migration) probably through the recruitment of VAV2. Our CO-IP data demonstrate that GRB7 directly binds with VAV2 following fibronectin engagement in HER2+ cells. To address whether GRB7 could serve as a pathway specific therapeutic target, we used siRNA to suppress GRB7 expression. Knockdown of GRB7 expression in the HER2+ breast cancer cell lines decreases RAS activation, cell proliferation, 2D and 3D colony formation and also blocked integrin-mediated RAC1 activation along with integrin-directed cell migration. These findings dissected the HER2-mediated signaling cascade into (1) HER2+ cell proliferation (HER2-GRB7-SHC-RAS) and (2) HER2+ cell migration (alpha5 beta1/alpha4 beta1-FAK-GRB7-VAV2-RAC1). Our data clearly demonstrate that a coupling of GRB7 with HER2 is required for the proliferative and migratory signals in HER2+ breast tumor cells.

4.
J Biol Chem ; 278(43): 41661-9, 2003 Oct 24.
Article in English | MEDLINE | ID: mdl-12917394

ABSTRACT

Herein we report that, despite the similarity of Rac2 to Rac1 (92% amino acid identity), macrophages derived from Rac2-/- mice, which continue to express Rac1, display a marked defect in alphavbeta3/alphavbeta5 and alpha4beta1 integrin-directed migration measured on vitronectin and fibronectin fragments (FN-H296), respectively. In contrast, mouse embryo fibroblasts derived from the Rac2 knockout mice utilize Rac1 for migration via alphavbeta3/alphavbeta5 and alpha4beta1. The genetic reconstitution of bone marrow-derived macrophages (BMM) with Rac2 restores the integrin-dependent migration of Rac2-deficient macrophages on vitronectin (VN) and FN-H296. The levels of GTP-Rac2 generated upon specific integrin engagement in wild type macrophages parallels the phenotypic defect observed in Rac2-deficient macrophages; i.e. FN-H296, alpha4beta1 > VN, alphavbeta3/alphavbeta5 > FN-CH271, alpha5beta1 > intact FN. In a COS7 cell system, the expression of Syk kinase alone is sufficient to convert the alpha4beta1 migration response to Rac2 dependence. Therefore, we present the first evidence that the alpha4beta1 receptor in blood cells has evolved a Syk-Rac2 signaling axis to transmit signals required for integrin-directed migration suggesting that Syk kinase in part encodes myeloid Rac2 specificity in vivo.


Subject(s)
Chemotaxis , Enzyme Precursors/physiology , Macrophages/physiology , Protein-Tyrosine Kinases/physiology , rac GTP-Binding Proteins/physiology , Animals , Bone Marrow Cells , Cell Adhesion , Fibronectins/physiology , GTP Phosphohydrolases/metabolism , Integrin alpha4beta1/physiology , Integrin alphaVbeta3/physiology , Integrins/physiology , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Receptors, Vitronectin/physiology , Syk Kinase , Vitronectin/physiology , rac GTP-Binding Proteins/analysis , rac GTP-Binding Proteins/genetics , rac1 GTP-Binding Protein/analysis , rac1 GTP-Binding Protein/physiology , RAC2 GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...