Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (141)2018 11 06.
Article in English | MEDLINE | ID: mdl-30474646

ABSTRACT

Low cost temperature sensors are increasingly used by ecologists to assess climatic variation and change on ecologically relevant scales. Although cost-effective, if not deployed with proper solar radiation shielding, the observations recorded from these sensors will be biased and inaccurate. Manufactured radiation shields are effective at minimizing this bias, but are expensive compared to the cost of these sensors. Here, we provide a detailed methodology for constructing a compact version of a previously described custom fabricated radiation shield, which is more accurate than other published shielding methods that attempt to minimize shield size or construction costs. The method requires very little material: corrugated plastic sheets, aluminum foil duct tape, and cable ties. One 15 cm and two 10 cm squares of corrugated plastic are used for each shield. After cutting, scoring, taping and stapling of the sheets, the 10 cm squares form the bottom two layers of the solar radiation shield, while the 15 cm square forms the top layer. The three sheets are held together with cable ties. This compact solar radiation shield can be suspended, or placed against any flat surface. Care must be taken to ensure that the shield is completely parallel to the ground to prevent direct solar radiation from reaching the sensor, possibly causing increased warm biases in sun-exposed sites in the morning and afternoon relative to the original, larger design. Even so, differences in recorded temperatures between the smaller, compact shield design and the original design were small (mean daytime bias = 0.06 °C). Construction costs are less than half of the original shield design, and the new design results in a less conspicuous instrument that may be advantageous in many field ecology settings.


Subject(s)
Radiation Protection/methods , Ecosystem , Humans , Temperature
2.
Ecol Evol ; 7(23): 9890-9904, 2017 12.
Article in English | MEDLINE | ID: mdl-29238523

ABSTRACT

In light of global climate change, ecological studies increasingly address effects of temperature on organisms and ecosystems. To measure air temperature at biologically relevant scales in the field, ecologists often use small, portable temperature sensors. Sensors must be shielded from solar radiation to provide accurate temperature measurements, but our review of 18 years of ecological literature indicates that shielding practices vary across studies (when reported at all), and that ecologists often invent and construct ad hoc radiation shields without testing their efficacy. We performed two field experiments to examine the accuracy of temperature observations from three commonly used portable data loggers (HOBO Pro, HOBO Pendant, and iButton hygrochron) housed in manufactured Gill shields or ad hoc, custom-fabricated shields constructed from everyday materials such as plastic cups. We installed this sensor array (five replicates of 11 sensor-shield combinations) at weather stations located in open and forested sites. HOBO Pro sensors with Gill shields were the most accurate devices, with a mean absolute error of 0.2°C relative to weather stations at each site. Error in ad hoc shield treatments ranged from 0.8 to 3.0°C, with the largest errors at the open site. We then deployed one replicate of each sensor-shield combination at five sites that varied in the amount of urban impervious surface cover, which presents a further shielding challenge. Bias in sensors paired with ad hoc shields increased by up to 0.7°C for every 10% increase in impervious surface. Our results indicate that, due to variable shielding practices, the ecological literature likely includes highly biased temperature data that cannot be compared directly across studies. If left unaddressed, these errors will hinder efforts to predict biological responses to climate change. We call for greater standardization in how temperature data are recorded in the field, handled in analyses, and reported in publications.

3.
Insects ; 6(2): 538-75, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26463203

ABSTRACT

Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...