Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 337: 125462, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34320742

ABSTRACT

The role and mechanism of elagitannase is misunderstood because it exhibited different activities due to the low purity or complexity of substrates, and there is no available information about the biochemical, physicochemical and molecular characteristics of the enzyme. This study was aimed to obtain enzymatic extracts by Aspergillus niger GH1 in solid-state fermentation, using dextrose and ellagitannins as inducers of ellagitannase. Protein and bioinformatic analysis were performed to identify the protein sequence expressed in terms of culture conditions. The presence of ellagitannins increased ellagitannase activity 1143-fold compared to dextrose. The higher ellagitannase activity was found at 18 h of culture (1143.30 U g-1PE). Three groups of proteins were identified in both cultures: ß-glucosidase, phospholipase C, and triacylglycerol lipase. However, only phospholipase C was overexpressed with ellagitannins as inducers, showing the most spontaneous reaction with punicalagin (ΔG -8.56). These results suggest that phospholipase could be involved in ellagitannins biosynthesis.


Subject(s)
Ellagic Acid , Hydrolyzable Tannins , Aspergillus niger/metabolism , Fermentation , Hydrolyzable Tannins/metabolism
2.
Appl Microbiol Biotechnol ; 76(1): 47-59, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17530245

ABSTRACT

In the last years, tannase has been the subject of a lot of studies due to its commercial importance and complexity as catalytic molecule. Tannases are capable of hydrolyzing complex tannins, which represent the main chemical group of natural anti-microbials occurring in the plants. The general outline of this work includes information of the substrates, the enzyme, and the applications. This review considers in its introduction the concepts and history of tannase and explores scientific and technological aspects. The "advances" trace the route from the general, molecular, catalytic, and functional information obtained under close to optimal conditions for microbial production through purification, description of the enzyme properties, and the commercial applications to the "perspectives" including expression studies, regulation, and potential uses; aspects related to the progress in our understanding of tannin biodegradation are also included.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Amino Acid Sequence , Bacteria/enzymology , Base Sequence , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Cosmetics , Food Industry , Fungi/enzymology , Genes, Fungal/genetics , Hydrolysis , Molecular Sequence Data , Sequence Alignment , Substrate Specificity , Tannins/chemistry , Tannins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL