Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 726251, 2021.
Article in English | MEDLINE | ID: mdl-34526980

ABSTRACT

Millimeter-length cables of bacteria were discovered growing along a graphite-rod electrode serving as an anode of a microbial electrolysis cell (MEC). The MEC had been inoculated with a culture of Fe-reducing microorganisms enriched from a polluted river sediment (Reconquista river, Argentina) and was operated at laboratory controlled conditions for 18 days at an anode poised potential of 240 mV (vs. Ag/AgCl), followed by 23 days at 480 mV (vs. Ag/AgCl). Anode samples were collected for scanning electron microscopy, phylogenetic and electrochemical analyses. The cables were composed of a succession of bacteria covered by a membranous sheath and were distinct from the known "cable-bacteria" (family Desulfobulbaceae). Apparently, the formation of the cables began with the interaction of the cells via nanotubes mostly located at the cell poles. The cables seemed to be further widened by the fusion between them. 16S rRNA gene sequence analysis confirmed the presence of a microbial community composed of six genera, including Shewanella, a well-characterized electrogenic bacteria. The formation of the cables might be a way of colonizing a polarized surface, as determined by the observation of electrodes extracted at different times of MEC operation. Since the cables of bacteria were distinct from any previously described, the results suggest that bacteria capable of forming cables are more diverse in nature than already thought. This diversity might render different electrical properties that could be exploited for various applications.

3.
Arch Biochem Biophys ; 693: 108538, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32810478

ABSTRACT

Oligosaccharyltransferase (OST) complex catalyzes the N-glycosylation of nascent polypeptides in the endoplasmic reticulum. Glycoproteins are critical for normal cell-cell interactions, especially during an immune response. Abnormal glycosylation is an insignia of several inflammatory diseases. However, the mechanisms that regulate the differential N-glycosylation are not fully understood. The OST complex can be assembled with one out of two catalytic subunits, STT3A or STT3B, which have different enzymatic properties. In this work, we investigated the expression of STT3A and STT3B in several mouse models such as a crossbreeding of normal and abortion-prone mice and an intestinal inflammation model. These animals were either exposed or not to acoustic stress (acute or chronic). The expression of the isoforms was analysed by immunohistochemistry and protein immunoblot. Finally, we investigated the gene regulatory elements employing public databases. Results demonstrated that inflammation alters the balance between the expression of both isoforms in the affected tissues. In homoeostatic conditions, STT3A expression predominates over STT3B, especially in epithelial cells. This relation is reversed as a consequence of inflammation. An increase in STT3B activity was associated to the generation of mannose-rich N-glycans. Accordingly, this type of N-glycans were found to decorate diverse inflamed tissues. The STT3A and STT3B genes are differentially regulated, which could account for the differences in the expression levels observed here. Our results support the idea that these isoforms could play different roles in cellular physiology. This study opens the possibility of studying the STT3A/STT3B expression ratio as a biomarker in acute inflammation or chronic diseases.


Subject(s)
Hexosyltransferases/metabolism , Inflammation/enzymology , Isoenzymes/metabolism , Membrane Proteins/metabolism , Animals , Catalytic Domain , Gene Expression Regulation, Enzymologic , Hexosyltransferases/genetics , Humans , Isoenzymes/genetics , Membrane Proteins/genetics , Polysaccharides/metabolism
4.
J Phycol ; 51(5): 943-62, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26986890

ABSTRACT

Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD-PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic-type PLDs but possess, instead, many bacteria-like PLDs. Among algae eukaryotic-type PLDs, we identified C2-PLDs and PXPH-like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria-like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito-PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP-PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non-PLD members within the bacteria-like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...