Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 16(9): 788-798, 2022 09.
Article in English | MEDLINE | ID: mdl-35686704

ABSTRACT

Spinal cord injury (SCI) can cause irreversible paralysis, with no regenerative treatment clinically available. Dogs with natural SCI present an established model and can facilitate translation of experimental findings in rodents to people. We conducted a prospective, single arm clinical safety study in companion dogs with chronic SCI to characterize the feasibility of intraspinal transplantation of hydrogel-encapsulated autologous mucosal olfactory ensheathing cell (mOEC) populations expressing chondroitinase ABC (chABC). mOECs and chABC are both promising therapies for SCI, and mOECs expressing chABC drive greater voluntary motor recovery than mOECs alone after SCI in rats. Canine mOECs encapsulated in collagen hydrogel can be matched in stiffness to canine SCI. Four dogs with complete and chronic loss of function caudal to a thoraco-lumbar lesion were recruited. After baseline measures, olfactory mucosal biopsy was performed and autologous mOECs cultured and transduced to express chABC, then hydrogel-encapsulated and percutaneously injected into the spinal cord. Dogs were monitored for 6 months with repeat clinical examinations, spinal MRI, kinematic gait and von Frey assessment. No adverse effects or significant changes on neurological examination were detected. MRI revealed large and variable lesions, with no spinal cord compression or ischemia visible after hydrogel transplantation. Owners reported increased pelvic-limb reflexes with one dog able to take 2-3 unsupported steps, but gait-scoring and kinematic analysis showed no significant improvements. This novel combination approach to regeneration after SCI is therefore feasible and safe in paraplegic dogs in a clinical setting. A randomised-controlled trial in this translational model is proposed to test efficacy.


Subject(s)
Pets , Spinal Cord Injuries , Animals , Cell Transplantation , Chondroitin ABC Lyase/pharmacology , Chondroitinases and Chondroitin Lyases/therapeutic use , Dogs , Feasibility Studies , Humans , Hydrogels/therapeutic use , Nerve Regeneration , Prospective Studies , Rats , Recovery of Function , Spinal Cord Injuries/pathology
2.
Sensors (Basel) ; 22(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35591140

ABSTRACT

In the development of implantable neural interfaces, the recording of signals from the peripheral nerves is a major challenge. Since the interference from outside the body, other biopotentials, and even random noise can be orders of magnitude larger than the neural signals, a filter network to attenuate the noise and interference is necessary. However, these networks may drastically affect the system performance, especially in recording systems with multiple electrode cuffs (MECs), where a higher number of electrodes leads to complicated circuits. This paper introduces formal analyses of the performance of two commonly used filter networks. To achieve a manageable set of design equations, the state equations of the complete system are simplified. The derived equations help the designer in the task of creating an interface network for specific applications. The noise, crosstalk and common-mode rejection ratio (CMRR) of the recording system are computed as a function of electrode impedance, filter component values and amplifier specifications. The effect of electrode mismatches as an inherent part of any multi-electrode system is also discussed, using measured data taken from a MEC implanted in a sheep. The accuracy of these analyses is then verified by simulations of the complete system. The results indicate good agreement between analytic equations and simulations. This work highlights the critical importance of understanding the effect of interface circuits on the performance of neural recording systems.


Subject(s)
Amplifiers, Electronic , Peripheral Nerves , Animals , Electric Impedance , Electrodes , Electrodes, Implanted , Equipment Design , Sheep , Signal-To-Noise Ratio
3.
Exp Neurol ; 340: 113660, 2021 06.
Article in English | MEDLINE | ID: mdl-33647272

ABSTRACT

Spinal cord injury (SCI) can cause chronic paralysis and incontinence and remains a major worldwide healthcare burden, with no regenerative treatment clinically available. Intraspinal transplantation of olfactory ensheathing cells (OECs) and injection of chondroitinase ABC (chABC) are both promising therapies but limited and unpredictable responses are seen, particularly in canine clinical trials. Sustained delivery of chABC presents a challenge due to its thermal instability; we hypothesised that transplantation of canine olfactory mucosal OECs genetically modified ex vivo by lentiviral transduction to express chABC (cOEC-chABC) would provide novel delivery of chABC and synergistic therapy. Rats were randomly divided into cOEC-chABC, cOEC, or vehicle transplanted groups and received transplant immediately after dorsal column crush corticospinal tract (CST) injury. Rehabilitation for forepaw reaching and blinded behavioural testing was conducted for 8 weeks. We show that cOEC-chABC transplanted animals recover greater forepaw reaching accuracy on Whishaw testing and more normal gait than cOEC transplanted or vehicle control rats. Increased CST axon sprouting cranial to the injury and serotonergic fibres caudal to the injury suggest a mechanism for recovery. We therefore demonstrate that cOECs can deliver sufficient chABC to drive modest functional improvement, and that this genetically engineered cellular and molecular approach is a feasible combination therapy for SCI.


Subject(s)
Chondroitinases and Chondroitin Lyases/administration & dosage , Olfactory Mucosa/physiology , Olfactory Mucosa/transplantation , Recovery of Function/physiology , Spinal Cord Injuries/enzymology , Spinal Cord Injuries/rehabilitation , Animals , Cells, Cultured , Chondroitinases and Chondroitin Lyases/biosynthesis , Dogs , Male , Olfactory Mucosa/cytology , Rats , Rats, Wistar , Spinal Cord Injuries/pathology
4.
J Tissue Eng ; 11: 2041731420934806, 2020.
Article in English | MEDLINE | ID: mdl-32670538

ABSTRACT

Safe hydrogel delivery requires stiffness-matching with host tissues to avoid iatrogenic damage and reduce inflammatory reactions. Hydrogel-encapsulated cell delivery is a promising combinatorial approach to spinal cord injury therapy, but a lack of in vivo clinical spinal cord injury stiffness measurements is a barrier to their use in clinics. We demonstrate that ultrasound elastography - a non-invasive, clinically established tool - can be used to measure spinal cord stiffness intraoperatively in canines with spontaneous spinal cord injury. In line with recent experimental reports, our data show that injured spinal cord has lower stiffness than uninjured cord. We show that the stiffness of hydrogels encapsulating a clinically relevant transplant population (olfactory ensheathing cells) can also be measured by ultrasound elastography, enabling synthesis of hydrogels with comparable stiffness to canine spinal cord injury. We therefore demonstrate proof-of-principle of a novel approach to stiffness-matching hydrogel-olfactory ensheathing cell implants to 'real-life' spinal cord injury values; an approach applicable to multiple biomaterial implants for regenerative therapies.

5.
PLoS One ; 14(3): e0213252, 2019.
Article in English | MEDLINE | ID: mdl-30840687

ABSTRACT

Olfactory ensheathing cells are thought to support regeneration and remyelination of damaged axons when transplanted into spinal cord injuries. Following transplantation, improved locomotion has been detected in many laboratory models and in dogs with naturally-occurring spinal cord injury; safety trials in humans have also been completed. For widespread clinical implementation, it will be necessary to derive large numbers of these cells from an accessible and, preferably, autologous, source making olfactory mucosa a good candidate. Here, we compared the yield of olfactory ensheathing cells from the olfactory mucosa using 3 different techniques: rhinotomy, frontal sinus keyhole approach and rhinoscopy. From canine clinical cases with spinal cord injury, 27 biopsies were obtained by rhinotomy, 7 by a keyhole approach and 1 with rhinoscopy. Biopsy via rhinoscopy was also tested in 13 cadavers and 7 living normal dogs. After 21 days of cell culture, the proportions and populations of p75-positive (presumed to be olfactory ensheathing) cells obtained by the keyhole approach and rhinoscopy were similar (~4.5 x 106 p75-positive cells; ~70% of the total cell population), but fewer were obtained by frontal sinus rhinotomy. Cerebrospinal fluid rhinorrhea was observed in one dog and emphysema in 3 dogs following rhinotomy. Blepharitis occurred in one dog after the keyhole approach. All three biopsy methods appear to be safe for harvesting a suitable number of olfactory ensheathing cells from the olfactory mucosa for transplantation within the spinal cord but each technique has specific advantages and drawbacks.


Subject(s)
Cell Transplantation/methods , Nerve Regeneration , Olfactory Mucosa/cytology , Olfactory Mucosa/transplantation , Recovery of Function , Spinal Cord Injuries/therapy , Animals , Cells, Cultured , Dogs , Locomotion
SELECTION OF CITATIONS
SEARCH DETAIL
...