Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Digit Health ; 4: 806076, 2022.
Article in English | MEDLINE | ID: mdl-35252959

ABSTRACT

OBJECTIVE: Automated speech recognition (ASR) systems have become increasingly sophisticated, accurate, and deployable on many digital devices, including on a smartphone. This pilot study aims to examine the speech recognition performance of ASR apps using audiological speech tests. In addition, we compare ASR speech recognition performance to normal hearing and hearing impaired listeners and evaluate if standard clinical audiological tests are a meaningful and quick measure of the performance of ASR apps. METHODS: Four apps have been tested on a smartphone, respectively AVA, Earfy, Live Transcribe, and Speechy. The Dutch audiological speech tests performed were speech audiometry in quiet (Dutch CNC-test), Digits-in-Noise (DIN)-test with steady-state speech-shaped noise, sentences in quiet and in averaged long-term speech-shaped spectrum noise (Plomp-test). For comparison, the app's ability to transcribe a spoken dialogue (Dutch and English) was tested. RESULTS: All apps scored at least 50% phonemes correct on the Dutch CNC-test for a conversational speech intensity level (65 dB SPL) and achieved 90-100% phoneme recognition at higher intensity levels. On the DIN-test, AVA and Live Transcribe had the lowest (best) signal-to-noise ratio +8 dB. The lowest signal-to-noise measured with the Plomp-test was +8 to 9 dB for Earfy (Android) and Live Transcribe (Android). Overall, the word error rate for the dialogue in English (19-34%) was lower (better) than for the Dutch dialogue (25-66%). CONCLUSION: The performance of the apps was limited on audiological tests that provide little linguistic context or use low signal to noise levels. For Dutch audiological speech tests in quiet, ASR apps performed similarly to a person with a moderate hearing loss. In noise, the ASR apps performed more poorly than most profoundly deaf people using a hearing aid or cochlear implant. Adding new performance metrics including the semantic difference as a function of SNR and reverberation time could help to monitor and further improve ASR performance.

2.
J Med Internet Res ; 24(2): e32581, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34919056

ABSTRACT

BACKGROUND: Hearing loss affects 1 in 5 people worldwide and is estimated to affect 1 in 4 by 2050. Treatment relies on the accurate diagnosis of hearing loss; however, this first step is out of reach for >80% of those affected. Increasingly automated approaches are being developed for self-administered digital hearing assessments without the direct involvement of professionals. OBJECTIVE: This study aims to provide an overview of digital approaches in automated and machine learning assessments of hearing using pure-tone audiometry and to focus on the aspects related to accuracy, reliability, and time efficiency. This review is an extension of a 2013 systematic review. METHODS: A search across the electronic databases of PubMed, IEEE, and Web of Science was conducted to identify relevant reports from the peer-reviewed literature. Key information about each report's scope and details was collected to assess the commonalities among the approaches. RESULTS: A total of 56 reports from 2012 to June 2021 were included. From this selection, 27 unique automated approaches were identified. Machine learning approaches require fewer trials than conventional threshold-seeking approaches, and personal digital devices make assessments more affordable and accessible. Validity can be enhanced using digital technologies for quality surveillance, including noise monitoring and detecting inconclusive results. CONCLUSIONS: In the past 10 years, an increasing number of automated approaches have reported similar accuracy, reliability, and time efficiency as manual hearing assessments. New developments, including machine learning approaches, offer features, versatility, and cost-effectiveness beyond manual audiometry. Used within identified limitations, automated assessments using digital devices can support task-shifting, self-care, telehealth, and clinical care pathways.


Subject(s)
Hearing Loss , Hearing , Audiometry, Pure-Tone/methods , Hearing Loss/diagnosis , Hearing Loss/therapy , Humans , Machine Learning , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...