Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 3(11): 1562-1575, 2019 11.
Article in English | MEDLINE | ID: mdl-31636425

ABSTRACT

Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.


Subject(s)
Beer , Saccharomyces , Adaptation, Physiological , Hybridization, Genetic , Saccharomyces cerevisiae
2.
Cell ; 166(6): 1397-1410.e16, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27610566

ABSTRACT

Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.


Subject(s)
Beer/microbiology , Industrial Microbiology , Phylogeny , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/physiology , DNA Copy Number Variations/genetics , Genes, Fungal/genetics , Genetic Variation , Genome, Fungal/genetics , Microbial Viability/genetics , Phenotype , Ploidies , Saccharomyces cerevisiae/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...