Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 20: 100103, 2021.
Article in English | MEDLINE | ID: mdl-34089862

ABSTRACT

In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.


Subject(s)
COVID-19/metabolism , Proteomics/methods , SARS-CoV-2/pathogenicity , Viral Proteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Biomarkers/analysis , Biomarkers/metabolism , COVID-19/diagnosis , COVID-19/virology , Host-Pathogen Interactions/physiology , Humans , Protein Processing, Post-Translational , SARS-CoV-2/metabolism , Virus Internalization
2.
J Proteome Res ; 20(2): 1229-1242, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33356293

ABSTRACT

The O-GlcNAc transferase (OGT) modifies nuclear and cytoplasmic proteins with ß-N-acetyl-glucosamine (O-GlcNAc). With thousands of O-GlcNAc-modified proteins but only one OGT encoded in the mammalian genome, a prevailing question is how OGT selects its substrates. Prior work has indicated that the tetratricopeptide repeat (TPR) domain of OGT is involved in substrate selection. Furthermore, several variants of OGT causal for X-linked intellectual disability (XLID) occur in the TPR domain. Therefore, we adapted the BioID labeling method to identify interactors of a TPR-BirA* fusion protein in HeLa cells. We identified 115 interactors representing known and novel O-GlcNAc-modified proteins and OGT interactors (raw data deposited in MassIVE, Dataset ID MSV000085626). The interactors are enriched in known OGT processes (e.g., chromatin remodeling) as well as processes in which OGT has yet to be implicated (e.g., pre-mRNA processing). Importantly, the identified TPR interactors are linked to several disease states but most notably are enriched in pathologies featuring intellectual disability that may underlie the mechanism by which mutations in OGT lead to XLID. This interactome for the TPR domain of OGT serves as a jumping-off point for future research exploring the role of OGT, the TPR domain, and its protein interactors in multiple cellular processes and disease mechanisms, including intellectual disability.


Subject(s)
Intellectual Disability , Tetratricopeptide Repeat , Animals , HeLa Cells , Humans , Intellectual Disability/genetics , N-Acetylglucosaminyltransferases/genetics
3.
Nat Methods ; 17(11): 1081-1082, 2020 11.
Article in English | MEDLINE | ID: mdl-33106675

Subject(s)
Glycomics , Software
4.
Cell Host Microbe ; 28(4): 586-601.e6, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32841605

ABSTRACT

The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Glycosylation , HEK293 Cells , Humans , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Protein Domains , Protein Interaction Domains and Motifs , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
5.
bioRxiv ; 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32743578

ABSTRACT

The current COVID-19 pandemic is caused by the SARS-CoV-2 betacoronavirus, which utilizes its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation that, taken together, can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.

6.
Biochemistry ; 55(37): 5204-17, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27599036

ABSTRACT

Heme is an iron-containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was performed to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK 293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in the level of hemoglobinization relative to that of untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1, in vitro measured FECH activity decreased in a dose-dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release, suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.


Subject(s)
Ferrochelatase/metabolism , Membrane Proteins/physiology , Receptors, Progesterone/physiology , Animals , Cell Line , Humans , Mice
7.
Elife ; 52016 04 29.
Article in English | MEDLINE | ID: mdl-27130732

ABSTRACT

Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure-a ribitol in a phosphodiester linkage-for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains.


Subject(s)
Dystroglycans/chemistry , Dystroglycans/metabolism , Extracellular Matrix/metabolism , Membrane Proteins/metabolism , Polysaccharides/analysis , Animals , Humans , Mannose/analysis , Nucleotidyltransferases/metabolism , Pentosyltransferases , Protein Binding , Ribitol/analysis , Zebrafish
8.
Elife ; 32014 Oct 03.
Article in English | MEDLINE | ID: mdl-25279697

ABSTRACT

Recent studies demonstrated that mutations in B3GNT1, an enzyme proposed to be involved in poly-N-acetyllactosamine synthesis, were causal for congenital muscular dystrophy with hypoglycosylation of α-dystroglycan (secondary dystroglycanopathies). Since defects in the O-mannosylation protein glycosylation pathway are primarily responsible for dystroglycanopathies and with no established O-mannose initiated structures containing a ß3 linked GlcNAc known, we biochemically interrogated this human enzyme. Here we report this enzyme is not a ß-1,3-N-acetylglucosaminyltransferase with catalytic activity towards ß-galactose but rather a ß-1,4-glucuronyltransferase, designated B4GAT1, towards both α- and ß-anomers of xylose. The dual-activity LARGE enzyme is capable of extending products of B4GAT1 and we provide experimental evidence that B4GAT1 is the priming enzyme for LARGE. Our results further define the functional O-mannosylated glycan structure and indicate that B4GAT1 is involved in the initiation of the LARGE-dependent repeating disaccharide that is necessary for extracellular matrix protein binding to O-mannosylated α-dystroglycan that is lacking in secondary dystroglycanopathies.


Subject(s)
Dystroglycans/metabolism , N-Acetylglucosaminyltransferases/metabolism , Amino Acid Sequence , Biocatalysis , Disaccharides/metabolism , Glycosylation , HEK293 Cells , Humans , Kinetics , Models, Biological , Molecular Sequence Data , N-Acetylglucosaminyltransferases/chemistry , Pentosyltransferases/metabolism , Solubility , Stereoisomerism , Substrate Specificity , Trisaccharides/metabolism , Uridine Diphosphate Glucuronic Acid/metabolism , Xylose/chemistry , Xylose/metabolism , UDP Xylose-Protein Xylosyltransferase
9.
Biochemistry ; 53(19): 3066-78, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24786756

ABSTRACT

The mammalian O-mannosylation pathway for protein post-translational modification is intricately involved in modulating cell-matrix interactions in the musculature and nervous system. Defects in enzymes of this biosynthetic pathway are causative for multiple forms of congenital muscular dystophy. The application of advanced genetic and biochemical technologies has resulted in remarkable progress in this field over the past few years, culminating with the publication of three landmark papers in 2013 alone. In this review, we will highlight recent progress focusing on the dramatic expansion of the set of genes known to be involved in O-mannosylation and disease processes, the concurrent acceleration of the rate of O-mannosylation pathway protein functional assignments, the tremendous increase in the number of proteins now known to be modified by O-mannosylation, and the recent progress in protein O-mannose glycan quantification and site assignment. Also, we attempt to highlight key outstanding questions raised by this abundance of new information.


Subject(s)
Mannose/metabolism , Mannosyltransferases/metabolism , Polysaccharides/metabolism , Protein Processing, Post-Translational/physiology , Animals , Carbohydrate Conformation , Glycosylation , Humans , Mannose/chemistry , Mannosyltransferases/chemistry , Polysaccharides/chemistry
10.
BMC Bioinformatics ; 12: 64, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21356119

ABSTRACT

BACKGROUND: Metal-containing proteins comprise a diverse and sizable category within the proteomes of organisms, ranging from proteins that use metals to catalyze reactions to proteins in which metals play key structural roles. Unfortunately, reliably predicting that a protein will contain a specific metal from its amino acid sequence is not currently possible. We recently developed a generally-applicable experimental technique for finding metalloproteins on a genome-wide scale. Applying this metal-directed protein purification approach (ICP-MS and MS/MS based) to the prototypical microbe Pyrococcus furiosus conclusively demonstrated the extent and diversity of the uncharacterized portion of microbial metalloproteomes since a majority of the observed metal peaks could not be assigned to known or predicted metalloproteins. However, even using this technique, it is not technically feasible to purify to homogeneity all metalloproteins in an organism. In order to address these limitations and complement the metal-directed protein purification, we developed a computational infrastructure and statistical methodology to aid in the pursuit and identification of novel metalloproteins. RESULTS: We demonstrate that our methodology enables predictions of metal-protein interactions using an experimental data set derived from a chromatography fractionation experiment in which 870 proteins and 10 metals were measured over 2,589 fractions. For each of the 10 metals, cobalt, iron, manganese, molybdenum, nickel, lead, tungsten, uranium, vanadium, and zinc, clusters of proteins frequently occurring in metal peaks (of a specific metal) within the fractionation space were defined. This resulted in predictions that there are from 5 undiscovered vanadium- to 13 undiscovered cobalt-containing proteins in Pyrococcus furiosus. Molybdenum and nickel were chosen for additional assessment producing lists of genes predicted to encode metalloproteins or metalloprotein subunits, 22 for nickel including seven from known nickel-proteins, and 20 for molybdenum including two from known molybdo-proteins. The uncharacterized proteins are prime candidates for metal-based purification or recombinant approaches to validate these predictions. CONCLUSIONS: We conclude that the largely uncharacterized extent of native metalloproteomes can be revealed through analysis of the co-occurrence of metals and proteins across a fractionation space. This can significantly impact our understanding of metallobiochemistry, disease mechanisms, and metal toxicity, with implications for bioremediation, medicine and other fields.


Subject(s)
Computational Biology/methods , Metalloproteins/analysis , Proteome/analysis , Tandem Mass Spectrometry , Amino Acid Sequence , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Databases, Protein , Electronic Data Processing/methods , Metalloproteins/chemistry , Metalloproteins/isolation & purification , Metals/analysis , Metals/chemistry , Metals/metabolism , Molybdenum/chemistry , Nickel/chemistry , Protein Interaction Domains and Motifs , Pyrococcus furiosus/metabolism
11.
Nature ; 466(7307): 779-82, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20639861

ABSTRACT

Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.


Subject(s)
Bacterial Proteins/analysis , Metalloproteins/analysis , Metalloproteins/chemistry , Metals/analysis , Proteome/analysis , Pyrococcus furiosus/chemistry , Bacterial Proteins/chemistry , Chromatography, Liquid , Escherichia coli/chemistry , Metals/chemistry , Metals/metabolism , Proteome/chemistry , Proteomics , Pyrococcus furiosus/metabolism , Sulfolobus solfataricus/chemistry , Tandem Mass Spectrometry
12.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 679-84, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15930619

ABSTRACT

Using a high degree of automation, the crystallography core at the Southeast Collaboratory for Structural Genomics (SECSG) has developed a high-throughput protein-to-structure pipeline. Various robots and automation procedures have been adopted and integrated into a pipeline that is capable of screening 40 proteins for crystallization and solving four protein structures per week. This pipeline is composed of three major units: crystallization, structure determination/validation and crystallomics. Coupled with the protein-production cores at SECSG, the protein-to-structure pipeline provides a two-tiered approach for protein production at SECSG. In tier 1, all protein samples supplied by the protein-production cores pass through the pipeline using standard crystallization screening and optimization procedures. The protein targets that failed to yield diffraction-quality crystals (resolution better than 3.0 A) become tier 2 or salvaging targets. The goal of tier 2 target salvaging, carried out by the crystallomics core, is to produce the target proteins with increased purity and homogeneity, which would render them more likely to yield well diffracting crystals. This is performed by alternative purification procedures and/or the introduction of chemical modifications to the proteins (such as tag removal, methylation, surface mutagenesis, selenomethionine labelling etc.). Details of the various procedures in the pipeline for protein crystallization, target salvaging, data collection/processing and high-throughput structure determination/validation, as well as some examples, are described.


Subject(s)
Crystallography, X-Ray/methods , Proteins/chemistry , Crystallization , Proteins/isolation & purification
13.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 5): 520-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15858261

ABSTRACT

The determination of protein structures on a genomic scale requires both computing capacity and efficiency increases at many stages along the complex process. By combining bioinformatics workflow-management techniques, cluster-based computing and popular crystallographic structure-determination software packages, an efficient and powerful new tool for structural biology/genomics has been developed. Using the workflow manager and a simple web interface, the researcher can, in a few easy steps, set up hundreds of structure-determination jobs, each using a slightly different set of program input parameters, thus efficiently screening parameter space for the optimal input-parameter combination, i.e. a set of parameters that leads to a successful structure determination. Upon completion, results from the programs are harvested, analyzed, sorted based on success and presented to the user via the web interface. This approach has been applied with success in more than 30 cases. Examples of successful structure determinations based on single-wavelength scattering (SAS) are described and include cases where the 'rational' crystallographer-based selection of input parameters values had failed.


Subject(s)
Proteins/chemistry , Computational Biology , Crystallization , Crystallography, X-Ray , Data Interpretation, Statistical , Protein Conformation , Scattering, Radiation , Software , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...