Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Biochem Funct ; 42(2): e3959, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38390770

ABSTRACT

Natural compounds are known to regulate stemness/self-renewal properties in colon cancer cells at molecular level. In the present study, we first time studied the colon cancer stem-like cells targeting potential of Kurarinone (KU) and explored the underlying mechanism. Cytotoxic potential of KU was checked in colon cancer cells. Colonosphere formation assay was performed to check the spheroid formation reduction potential of KU in HCT-116 cells by using phase-contrast microscopy. Stemness/self-renewal marker expression was studied at mRNA and protein levels in colonosphere. The qRT-PCR, western blot analysis, and flow cytometer techniques were used to assess the effect of KU treatment on cell cycle progression and apoptosis induction in colon cancer cells and colonosphere. Further, effect of KU treatment on pSTAT3 status and its nuclear translocation was also studied. KU treatment significantly decreased HCT-116 cell proliferation and reduced sphere formation potential at IC30 (8.71 µM) and IC50 (20.34 µM) concentrations compared to respective vehicle-treated groups, respectively. KU exposure significantly reduced the expression of CD44, c-Myc, Bmi-1, and Sox2 stemness/self-renewal markers in colonosphere in a dose-dependent manner. KU treatment inhibits JAK2-STAT3 signaling pathway by reducing pSTAT3 levels and its nuclear translocation in HCT-116 cells and colonosphere at IC50 concentration. KU treatment significantly decreased the expression of CCND1 and CDK4 cell cycle-specific markers and arrested the HCT-116 cells and colonosphere in G1-phase. Further, KU treatment increased Bax/Bcl-2 ratio, apoptotic cell population, cleaved caspase 3, and PARP-1 in HCT-116 cells and colonosphere. In conclusion, KU treatment decreases stemness/self-renewal, induces cell cycle arrest and apoptosis in HCT-116 colonosphere by down-regulating CD44-JAK2-STAT3 axis. Thus, targeting stemness/self-renewal and other cancer hallmark(s) by KU through CD44/JAK2/STAT3 signaling pathway might be a novel strategy to target colon cancer stem-like cells.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Flavonoids , Humans , Apoptosis , Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Signal Transduction , Cell Proliferation , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Janus Kinase 2/metabolism
2.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345058

ABSTRACT

Gamma secretase (GS) is an important therapeutic target in anticancer drug discovery. Increased GS activity activates notch signaling pathway which is associated with cancer stemness and drug resistance in cancer cells. A total of 69,075 natural and their derivative compounds were screened to identify the lead compound on the basis of in silico GS catalytic domain binding potential and in vitro selective anticancer efficacy. STOCK1N-23234 showed higher dock score (-11.82) compared to DAPT (-9.2) in molecular docking experiment and formed hydrogen bond with the key amino acid (Asp385) involve in catalysis process. Molecular dynamics (MD) simulation parameters (RMSD, RMSF, Rg, SASA and hydrogen bond formation) revealed that the STOTCK1N-23234 formed structurally and energetically stable complex with the GS catalytic domain with lower binding energy (-22.79 kcal/mol) compared to DAPT (-16.22 kcal/mol). STOCK1N-23234 showed better toxicity (up to 60%) against colon and breast cancer cells (HCT-116 and MDA-MB-453) at 1-70 µM concentration. Interestingly, STOCK1N-23234 did not showed cytotoxicity against human normal breast cells (MCF-10A). STOCK1N-23234 treatment significantly decreased sphere formation, notch promoter activity, and transcription of notch target genes (Hes-1 and Hey-1) in HCT-116 cells derived colonosphere. Confocal microscopy revealed that STOTCK1N-23234 treatment at test concentration induced apoptosis related morphological changes, reduced mitochondria membrane potential and increased reactive oxygen species production in HCT-116 cells compared to non-treated cells. In conclusion, STOCK1N-23234 is a novel lead natural anticancer compound which requires in depth validation in cancer preclinical models.Communicated by Ramaswamy H. Sarma.

3.
Article in English | MEDLINE | ID: mdl-37653637

ABSTRACT

BACKGROUND: Medicinal plants play an essential role in everyday life; plants highly contain therapeutic phytoconstituents commonly used to treat various diseases. This paper discusses the Chemical composition, In vitro antiproliferative activity and In silico study of essential oil extracted from Ocimum tenuiflorum (family Lamiaceae), and Coriandrum sativum (family Apiaceae). OBJECTIVE: In present study GC-MS was used to identify the chemical constituents from O. tenuiflorum and C. sativum. In vitro antiproliferative activity was performed on A549 cancer cell lines. In silico study was performed by Schrodinger's maestro software to identify chemical constituents in both plants as potential EGFR inhibitors for the treatment of lung cancer. METHODS: The essential oil was extracted by hydro distillation from aerial parts of O. tenuiflorum and C. sativum. The volatile oil sample was analyzed by (GC-MS) Gas Chromatography-Mass Spectrometry. Different chemical constituents were identified based on the retention index and compared with the NIST library. The oil samples from O. tenuiflorum and C. sativum was also evaluated for antiproliferative activity against human lung cancer A549 cell lines. In silico study was performed by Schrodinger maestro software against EGFR (PDB ID 5HG8). RESULT: O. tenuiflorum essential oil contains Eugenol (42.90%), 2-ß-Elemene (25.98%), ß-Caryophyllene (19.12%) are the major constituents. On the other side, C. sativum contains n-nonadecanol-1 (16.37%), decanal (12.37%), dodecanal (12.27%), 2-Dodecanal (9.67%), Phytol (8.81%) as the major constituents. Both the oils have shown in vitro antiproliferative activity against human lung cancer cell lines A549 having IC50 values of 38.281µg/ml (O. tenuiflorum) and 74.536 µg/ml (C. sativum). Molecular interactions of constituents hydro distilled from two oils was analysed by schrodinger maestro software against EGFR (PDB ID 5HG8). CONCLUSION: The oil sample extracted from O. tenuiflorum showed more antiproliferative activity than C. sativum. In silico study showed that two chemical constituents, namely di-isobutyl phthalate (-7.542kcal/mol) and dibutyl phthalate (-7.181kcal/mol) from O. tenuiflorum and one diethyl phthalate (-7.224 kcal/mol) from C. sativum having more docking score than standard Osimertinib which indicates the effectiveness of oils for lung cancer.

4.
Cell Biochem Funct ; 41(8): 1230-1241, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37711079

ABSTRACT

Piper chaba (Piperaceae) is a medicinal spice plant that possesses several pharmacological activities. In the present study, we for the first time studied the effect of P. chaba extract on breast cancer cells. P. chaba stem methanolic (PCSM) extract produced time and dose dependent cytotoxicity in luminal breast cancer cells (MCF-7 and T47D) with a minimal toxicity in breast normal cells (MCF-10A) at 10-100 µg/mL concentration. PCSM extract exerts 16.79 and 31.21 µg/mL IC50 for T47D and MCF-7 cells, respectively, in 48 h treatment. PCSM significantly arrests the T47D cells at the G0/G1 phase by reducing the CCND1 and CDK4 expression at mRNA and protein levels. PCSM extract treatment significantly altered nuclear morphology, mitochondria membrane potential, and production of reactive oxygen species in T47D cells at IC50 concentration. Extract treatment significantly altered the Bax/Bcl-2 ratio and altered caspase 8 and 3 mRNA/protein levels in T47D cells. Confocal microscopy showed an increase in late apoptosis in PCSM extract-treated breast cancer cells at IC50 . Further, an increased caspase 9 and caspase 3/7 enzymatic activity was observed in test cells compared with nontreated cells. In conclusion, P. chaba phytocompound possesses the potential to induce cell cycle arrest and induce apoptosis in luminal breast cancer cells.


Subject(s)
Breast Neoplasms , Piper , Humans , Female , Plant Extracts/pharmacology , Cell Line, Tumor , Breast Neoplasms/drug therapy , S Phase , Spices , Apoptosis , Cell Cycle , MCF-7 Cells , RNA, Messenger , Cell Proliferation
5.
J Cell Biochem ; 124(8): 1186-1202, 2023 08.
Article in English | MEDLINE | ID: mdl-37436061

ABSTRACT

MicroRNAs regulate breast stemness and self-renewal properties in breast cancer cells at the molecular level. Recently we reported the clinical relevance and in vitro expression profile of novel miR-6844 in breast cancer and -derived stem-like cells (mammosphere). In the present study, we first time explore the functional role of loss of miR-6844 in breast cancer cells derived mammosphere. Down expression of miR-6844 significantly decreased cell proliferation in MCF-7 and T47D cells derived mammosphere in a time-dependent manner. MiR-6844 down expression reduced the sphere formation in terms of size and number in test cells. Loss of miR-6844 significantly altered stemness and self-renewal markers (Bmi-1, Nanog, c-Myc, Sox2, and CD44) in mammosphere compared to negative control spheres. Moreover, loss of miR-6844 inhibits the JAK2-STAT3 signaling pathway by decreasing p-JAK2 and p-STAT3 levels in breast cancer cells derived mammosphere. Loss of miR-6844 expression significantly decreased CCND1 and CDK4 mRNA/protein levels and arrested breast cancer stem-like cells in G2/M phase. Reduced expression of miR-6844 increased Bax/Bcl-2 ratio, late apoptotic cell population, and Caspase 9 and 3/7 activity in the mammosphere. Low expression of miR-6844 decreased migratory and invasive cells by altering the expression of Snail, E-cad, and Vimentin at mRNA/protein levels. In conclusion, loss of miR-6844 decreases stemness/self-renewal and other cancer hallmark in breast cancer stem-like cells through CD44-JAK2-STAT3 axis. Thus, downregulation of miR-6844 by therapeutic agents might be a novel strategy to target breast cancer stemness and self-renewal.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Down-Regulation , Neoplastic Stem Cells/metabolism , RNA, Messenger/metabolism , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Mol Cell Biochem ; 478(10): 2361-2378, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36680668

ABSTRACT

MicroRNAs (miRNAs) play critical role in normal breast development and their altered expression may lead to breast cancer. Identification of new miRNAs allows us to understand the normal physiological process and associated disease pathophysiology. In the present study we identify the novel miRNAs in withaferin A treated breast normal cells (MCF-10A) using small RNA sequencing. The pathophysiological potential of the identified miRNAs was checked by studying their expression pattern in MDA-MB-231 and MCF-7 breast cancer cells using qRT-PCR technique. The secondary/tertiary structure of the identified miRNAs, target gene enrichment in Gene Ontology terms and KEGG pathway, miRNA-mRNA interaction of the sorted target genes, miRNA-mRNA/miRNA-argonaute protein/miRNA-mRNA-argonaute protein interaction and stability, were studied using bioinformatics tools/software, and molecular dynamics simulations. Hsa-miR-N88585 and hsa-miR-N461089 were identified and validated as novel miRNAs in normal breast cells. Up-expression of identified miRNAs in MDA-MB-231 and MCF-7 cells indicates their oncogenic nature. Identified target genes were enriched in classical signaling pathways (AMPK and Ras) and important GO terms. PLXDC2, BHLHE40, ARMC8, and PECAM1, CDC27, KCNK3 genes were sorted as putative targets for hsa-miR-N88585 and hsa-miR-N461089, respectively. MD simulation revealed stable hsa-miR-N88585/hsa-miR-N461089-AGO protein complex formation which indicates their further processing. In conclusion, the study identifies hsa-miR-N88585 and hsa-miR-N461089 as novel miRNAs in breast normal cells which are significantly inversely expressed in breast cancer cells. Further experiments are required to study the role of identified novel miRNAs in normal breast development and pathophysiology of breast cancer.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , MicroRNAs/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Breast Neoplasms/genetics , Base Sequence , RNA, Messenger/metabolism , Gene Expression Profiling/methods , Gene Regulatory Networks , Armadillo Domain Proteins/genetics
7.
Vegetos ; 36(2): 701-720, 2023.
Article in English | MEDLINE | ID: mdl-35729946

ABSTRACT

Abstract: Coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has infected approximately 26 million people and caused more than 6 million deaths globally. Spike (S)-protein on the outer surface of the virus uses human trans-membrane serine protease-2 (TMPRSS2) to gain entry into the cell. Recent reports indicate that human dipeptidyl peptidase-4 inhibitors (DPP4 or CD26) could also be utilized to check the S-protein mediated viral entry into COVID-19 patients. RNA dependent RNA polymerase (RdRp) is another key virulence protein of SARS-CoV-2 life cycle. The study aimed to identify the potential anti-SARS-CoV-2 inhibitors present in Withania somnifera (Solanaceae) using computer aided drug discovery approach. Molecular docking results showed that flavone glycoside, sugar alcohol, and flavonoid present in W. somnifera showed - 11.69, - 11.61, - 10.1, - 7.71 kcal/mole binding potential against S-protein, CD26, RdRp, and TMPRSS2 proteins. The major standard inhibitors of the targeted proteins (Sitagliptin, VE607, Camostat mesylate, and Remdesivir) showed the - 7.181, - 6.6, - 5.146, and - 7.56 kcal/mole binding potential. Furthermore, the lead phytochemicals and standard inhibitors bound and non-bound RdRp and TMPRSS2 proteins were subjected to molecular dynamics (MD) simulation to study the complex stability and change in protein conformation. The result showed energetically favorable and stable complex formation in terms of RMSD, RMSF, SASA, Rg, and hydrogen bond formation. Drug likeness and physiochemical properties of the test compounds exhibited satisfactory results. Taken together, the present study suggests the presence of potential anti-SARS-CoV-2 phytochemicals in W. somnifera that requires further validation in in vitro and in vivo studies. Supplementary information: The online version contains supplementary material available at 10.1007/s42535-022-00404-4.

8.
J Biomol Struct Dyn ; 41(17): 8432-8444, 2023.
Article in English | MEDLINE | ID: mdl-36239003

ABSTRACT

Gamma secretase (GS) produces Notch Intracellular Domain (NICD) by trans-membrane cleavage of notch receptor. The NICD enters the nucleus and activates the notch signaling pathway (NSP) by activating notch-responsive gene transcription. Hyperactivation of NSP is related to cancer aggressiveness, therapy resistance, and poor therapy outcome, and decreased overall disease-free survival in patients. Till date, none of the GS inhibitors (GSI) has been clinically approved due to their toxicity in patients. Thus in the present study, we explored the GS catalytic site binding potential of hesperidin (natural flavone glycoside) and its effect on notch responsive gene expression in HCT-116 cells. Molecular docking, MM-GBSA binding energy calculations, and molecular dynamics (MD) simulation experiments were performed to study the GS catalytic site binding potential of hesperidin. The compound showed better GS catalytic site binding potential at the active site compared to experimentally validated GSI, N-N-(3, 5-Difluorophenacetyl)-L-alanyl-S-phenylglycine t-butyl ester (DAPT) in molecular docking and MM-GBSA experiments. MD simulation results showed that hesperidin forms stable and energetically favorable complex with gamma secretase in comparison to standard inhibitor (DAPT)-GS complex. Further, in vitro experiments showed that hesperidin inhibited cell growth and sphere formation potential in HCT-116 cells. Further, hesperidin treatment altered notch responsive genes (Hes1, Hey1, and E-cad) and cancer stemness/self-renewal markers expression at transcription levels. In conclusion, hesperidin produces toxicity in HCT-116 cells and decreases colonosphere formation by inhibiting transcription of notch signaling pathway target genes and stemness markers.Communicated by Ramaswamy H. Sarma.

9.
Metabolites ; 12(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36295828

ABSTRACT

Rutin, a natural flavonol, can modulate molecular signaling pathways and has considerable potential in cancer treatment. However, little is known about the effect of rutin on the notch signaling pathway (NSP) in cancer and cancer stem-like cells. In this study, we explored the effect of rutin on gamma secretase (GS, a putative notch signaling target) inhibition mediated NICD (Notch Intracellular Domain) production in colon cancer cells. Molecular docking, MM-GBSA, and Molecular dynamics (MD) simulation experiments were performed to check rutin's GS catalytic site binding potential. The HCT-116 colon cancer and cancer stem-like cells (colonospheres) were utilized to validate the in silico findings. The NICD production, notch promoter assay, expression of notch target genes, and cancer stemness/self-renewal markers were studied at molecular levels. The results were compared with the Notch-1 siRNA transfected test cells. The in silico study revealed GS catalytic site binding potential in rutin. The in vitro results showed a decreased NICD formation, an altered notch target gene (E-cad, Hes-1, and Hey-1) expression, and a reduction in stemness/self-renewal markers (CD44, c-Myc, Nanog, and Sox2) in test cells in a time and dose-dependent manner. In conclusion, rutin inhibits the notch signaling pathway and reduces the stemness/self-renewal property in colon cancer cells and the colonospheres by targeting gamma secretase. The clinical efficacy of rutin in combination therapy in colon cancer may be studied in the future.

10.
Curr Pharm Des ; 28(35): 2890-2900, 2022.
Article in English | MEDLINE | ID: mdl-36154601

ABSTRACT

BACKGROUND: In bacteria, peptide deformylase (PDF), a metalloenzyme, removes N-formyl methionine from a nascent protein, which is a critical step in the protein maturation process. The enzyme is ubiquitously present in bacteria and possesses therapeutic target potential. Acarbose, an FDA-approved antidiabetic drug, is an alpha-glucosidase inhibitor of microbial origin. Clinical studies indicate that acarbose administration in humans can alter gut microbiota. As per the best of our knowledge, the antibacterial potential of acarbose has not been reported. OBJECTIVE: The present study aimed to check the binding ability of acarbose to the catalytic site of E. coli PDF and assess its in vitro antibacterial activity. METHODS: Molecular docking, molecular dynamic (MD) simulation, and MM-PBSA experiments were performed to study the binding potential of the catalytic site, and a disc diffusion assay was also employed to assess the antibacterial potential of acarbose. RESULTS: Acarbose was found to form a hydrogen bond and interact with the metal ion present at the catalytic site. The test compound showed a better docking score in comparison to the standard inhibitor of PDF. MD simulation results showed energetically stable acarbose-PDF complex formation in terms of RMSD, RMSF, Rg, SASA, and hydrogen bond formation throughout the simulation period compared to the actinonin-PDF complex. Furthermore, MM-PBSA calculations showed better binding free energy (ΔG) of acarbose PDF than the actinonin-PDF complex. Moreover, acarbose showed in vitro antibacterial activity. CONCLUSION: Acarbose forms conformational and thermodynamically stable interaction with the E. coli peptide deformylase catalytic site. Results of the present work necessitate in-depth antimicrobial potential studies on the effect of acarbose on drug resistance and nonresistant bacteria.


Subject(s)
Acarbose , Escherichia coli , Humans , Acarbose/pharmacology , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalytic Domain , Enzyme Inhibitors/chemistry , Escherichia coli/metabolism , Molecular Docking Simulation
11.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36142489

ABSTRACT

Signal peptide, CUB, and EGF-like domain-containing proteins (SCUBE) are secretory cell surface glycoproteins that play key roles in the developmental process. SCUBE proteins participate in the progression of several diseases, including cancer, and are recognized for their oncogenic and tumor suppressor functions depending on the cellular context. SCUBE proteins promote cancer cell proliferation, angiogenesis, invasion, or metastasis, stemness or self-renewal, and drug resistance. The association of SCUBE with other proteins alters the expression of signaling pathways, including Hedgehog, Notch, TGF-ß/Smad2/3, and ß-catenin. Further, SCUBE proteins function as potential prognostic and diagnostic biomarkers for breast cancer, renal cell carcinoma, endometrial carcinoma, and nasopharyngeal carcinoma. This review presents key features of SCUBE family members, and their structure and functions, and highlights their contribution in the development and progression of cancer. A comprehensive understanding of the role of SCUBE family members offers novel strategies for cancer therapy.


Subject(s)
Kidney Neoplasms , beta Catenin , Biomarkers , Calcium-Binding Proteins/metabolism , Epidermal Growth Factor/metabolism , Humans , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Protein Sorting Signals , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism
12.
Cancers (Basel) ; 14(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35740529

ABSTRACT

Breast cancer is heterogeneous disease with variable prognosis and therapeutic response. Approximately, 70% of diagnosed breast cancer represents the luminal A subtype. This subpopulation has a fair prognosis with a lower rate of relapse than the other clinical subtypes. Acquisition of stemness in luminal A subtype modifies the phenotype plasticity to accomplish increased aggressiveness and therapeutic resistance. Therefore, targeting luminal A-derived breast cancer stem cells (BCSCs) could be a promising strategy for its prevention and treatment. Extensive studies reveal that dietary phytochemicals have the potential to target BCSCs by modulating the molecular and signal transduction pathways. Dietary phytochemicals alone or in combination with standard therapeutic modalities exert higher efficacy in targeting BCSCs through changes in stemness, self-renewal properties and hypoxia-related factors. These combinations offer achieving higher radio- and chemo- sensitization through alteration in the key signaling pathways such as AMPK, STAT3, NF-ĸB, Hedgehog, PI3K/Akt/mTOR, Notch, GSK3ß, and Wnt related to cancer stemness and drug resistance. In this review, we highlight the concept of targeting luminal A-derived BCSCs with dietary phytochemicals by summarizing the pathways and underlying mechanism(s) involved during therapeutic resistance.

13.
Mol Carcinog ; 61(9): 876-889, 2022 09.
Article in English | MEDLINE | ID: mdl-35770722

ABSTRACT

Breast cancer is a heterogeneous disease consisting of atypical cell populations that share stem cell-like characteristics associated with therapeutic resistance, disease relapse, and poor clinical outcome. MicroRNAs (miRNA), and small noncoding RNA, are pivotal in the regulation of self-renewal, stemness, and cellular differentiation. Withaferin A (WA), a steroidal lactone, is a major bioactive constituent of Withania somnifera (Solanaceae) known for its anticancer properties. In this study, the effect of WA on modulation of miRNA expression in breast cancer-derived mammosphere was assessed utilizing small RNA sequencing. Treatment with WA inhibited MCF-7 and T47D cells derived mammosphere formation with a significant decrease in CD44, EpCAM, Nanog, OCT4, and SOX2 as markers of self-renewal and stemness. Small RNA sequencing demonstrated a total of 395 differentially expressed miRNAs (DEMs) including 194 upregulated and 201 downregulated miRNAs in WA-treated MCF-7 mammospheres. Bioinformatics analysis utilizing the KEGG pathway, Gene Ontology enrichment, protein-protein, and miRNA-mRNA interaction network identified altered expression in a few hub genes viz. AKT1, PTEN, MYC, CCND1, VEGFA, NOTCH1, and IGFR1 associated with DEMs in WA-treated mammospheres. Further quantitative RT-PCR analysis validated the expression of DEMs including miR-549a-5p, miR-1247-5p, miR-124-5p, miR-137-5p, miR-34a-5p, miR-146a-5p, miR-99a-5p, miR-181a-5p, let-7c-5p, and let-7a-5p. In particular, let-7c-5p is designated as a tumor suppressor in breast cancer. An increase in miR-let-7c-5p expression was noted after WA treatment, with a simultaneous decrease in CCND1 and c-MYC at mRNA and protein levels. Taken together, our study demonstrated WA-mediated miRNA expression, in particular, upregulation of miR-let-7c-5p, leads to the inhibition of breast cancer cells derived mammospheres.


Subject(s)
Breast Neoplasms , MicroRNAs , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Withanolides
14.
3 Biotech ; 12(3): 72, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35223358

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive, metastatic/invasive sub-class of breast cancer (BCa). Cell surface protein-derived multi-epitope vaccine-mediated targeting of TNBC cells could be a better strategy against the disease. Literature-based identified potential cell surface markers for TNBC cells were subjected to expression pattern and survival analysis in BCa patient sample using TCGA database. The cytotoxic and helper T-lymphocytes antigenic epitopes in the test proteins were identified, selected and fused together with the appropriate linkers and an adjuvant, to construct the multi-epitope vaccine (MEV). The immune profile, physiochemical property (PP) and world population coverage of the MEV was studied. Immune simulation, cloning in a suitable vector, molecular docking (against Toll-like receptors, MHC (I/II) molecules), and molecular dynamics simulations of the MEV was performed. Cell surface markers were differentially expressed in TNBC samples and showed poor survival in TNBC patients. Satisfactory PP and WPC (up to 89 and 99%) was observed. MEV significant stable binding with the immune molecules and induced the immune cells in silico. The designed vaccine has capability to elicit immune response which could be utilized to target TNBC alone/combination with other therapy. The experimental studies are required to check the efficacy of the vaccine. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-022-03140-3.

15.
J Biomol Struct Dyn ; 40(22): 11676-11690, 2022.
Article in English | MEDLINE | ID: mdl-34387138

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype generally associated with younger women. Due to the lack of suitable drugable targets in TNBC, the microRNAs are considered as a better hope as therapeutic agents for the management of the disease. In this study, we identified differentially expressed miRNAs (DEMs) and associated hub genes in TNBC microarray data (GSE38167, GSE60714, and GSE10833) using bioinformatics tools. The identified miRNAs and genes were validated in the TNBC cell line model (MDA-MB-231) compared with the normal breast cells (MCF-10A) using the qRT-PCR technique. False-positive DEMs were avoided by comparing the DEMs profile of TNBC and triple positive breast cancer (TPBC) cell line model (BT474) compared with the MCF-10A cells data. In addition, we studied the effect of anticancer phytochemicals on the differential expression of miRNAs and genes in MDA-MB-231 cells. Furthermore, target predictions, functional enrichment and KEGG pathway analysis, mutation and copy number alterations, and overall survival analysis of DEMs in TNBC sample was investigated using standard computational tools. The study identifies first time the association of hsa-miR-1250, has-miR-1273, and has-miR-635 with the TNBC. DEMs showed significant association with the Wnt, ErbB, PI3-Akt and cAMP signaling pathways having clinical implications in TNBC tumorigenesis. The DEMs and hub genes (HOXC6 and ACVR2B) showed survival disadvantages in TNBC patients. In summary, the identified miRNAs and hub genes show important implications in TNBC tumorigenesis and patient survival. We recommend further experimental studies on pathophysiological mechanism of the identified miRNAs and hub genes in TNBC.Communicated by Ramaswamy H. Sarma.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Triple Negative Breast Neoplasms/genetics , Cell Line , Computational Biology , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic
16.
Metabolites ; 13(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36676955

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with minimal treatment options. In the present work, Withaferin A (WA), a natural steroidal lactone found in Withania somnifera (Solanaceae), was studied to deduce the miRNA expression modulation mediated anticancer mode of action in TNBC cells. Small RNA next generation sequencing (NGS) of WA (2 µM) and vehicle (0.1% DMSO)-treated MDA-MB-231 cells revealed a total of 413 differentially expressed miRNAs (DEMs) and demonstrated that WA potentially up-regulates the miR-181c-5p, miR-15a-5p, miR-500b-5p, miR-191-3p, and miR-34a-5p and down-regulates miR-1275, miR-326, miR-1908-5p, and miR-3940-3p among total DEMs. The NGS and qRT-PCR expression analysis revealed a significantly higher expression of miR-181c-5p among the top 10 DEMs. Predicted target genes of the DEMs showed enrichment in cancer-associated gene ontology terms and KEGG signaling pathways. Transient up-expression of mir-181c-5p showed a time-dependent decrease in MDA-MB-231 and MDA-MB-453 cell viability. Co-treatment of miR-181c-5p mimic and WA (at varying concentration) down-regulated cell cycle progression markers (CDK4 and Cyclin D1) at mRNA and protein levels. The treatment induced apoptosis in MDA-MB-231 cells by modulating the expression/activity of Bax, Bcl2, Caspase 3, Caspase 8, Caspase 3/7, and PARP at mRNA and protein levels. Confocal microscopy and Annexin PI assays revealed apoptotic induction in miRNA- and steroidal-lactone-treated MDA-MB-231 cells. Results indicate that the Withaferin A and miRNA mimic co-treatment strategy may be utilized as a newer therapeutic strategy to treat triple-negative breast cancer.

17.
Front Pharmacol ; 12: 737137, 2021.
Article in English | MEDLINE | ID: mdl-34646138

ABSTRACT

In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2-62 µM while in vivo efficacy was studied in the range of 20-500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.

18.
3 Biotech ; 11(10): 446, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34631347

ABSTRACT

The stemness property of cells allows them to sustain their lineage, differentiation, proliferation, and regeneration. MicroRNAs are small non-coding RNAs known to regulate the stemness property of cells by regulating the expression of stem cell signaling pathway proteins at mRNA level. Dysregulated miRNA expression and associated stem cell signaling pathways in normal stem cells give rise to cancer stem cells. Thus, the present study was aimed to identify the miRNAs involved in the regulation of major stem cell signaling pathways. The proteins (n = 36) involved in the signaling pathways viz., Notch, Wnt, JAK-STAT, and Hedgehog which is associated with the stemness property was taken into the consideration. The miRNAs, having binding sites for the targeted protein-encoding gene were predicted using an online tool (TargetScan) and the common miRNA among the test pathways were identified using Venn diagram analysis. A total of 22 common miRNAs (including 8 non-studied miRNAs) were identified which were subjected to target predictions, KEGG pathway, and gene ontology (GO) analysis to study their potential involvement in the stemness process. Further, we studied the clinical relevance of the non-studied miRNAs by performing the survival analysis and their expression levels in clinical breast cancer patients using the TCGA database. The identified miRNAs showed overall poor survival in breast cancer patients. The miR-6844 showed significantly high expression in various clinical subgroups of invasive breast cancer patients compared with the normal samples. The expression levels of identified miRNA(s) were validated in breast normal, luminal A, triple-negative, and stem cells in vitro models using qRT-PCR analysis. Further treatment with the phytochemical showed excellent down regulation of the lead miRNA. Overall the study first time reports the association of four miRNAs (miR-6791, miR-4419a, miR-4251 and miR-6844) with breast cancer stemness. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02994-3.

19.
Front Cell Infect Microbiol ; 11: 730288, 2021.
Article in English | MEDLINE | ID: mdl-34458164

ABSTRACT

The present study explores the SARS-CoV-2 drugable target inhibition efficacy of phytochemicals from Indian medicinal plants using molecular docking, molecular dynamics (MD) simulation, and MM-PBSA analysis. A total of 130 phytochemicals were screened against SARS-CoV-2 Spike (S)-protein, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). Result of molecular docking showed that Isoquercetin potentially binds with the active site/protein binding site of the Spike, RdRP, and Mpro targets with a docking score of -8.22, -6.86, and -9.73 kcal/mole, respectively. Further, MS 3, 7-Hydroxyaloin B, 10-Hydroxyaloin A, showed -9.57, -7.07, -8.57 kcal/mole docking score against Spike, RdRP, and Mpro targets respectively. The MD simulation was performed to study the favorable confirmation and energetically stable complex formation ability of Isoquercetin and 10-Hydroxyaloin A phytochemicals in Mpro-unbound/ligand bound/standard inhibitor bound system. The parameters such as RMSD, RMSF, Rg, SASA, Hydrogen-bond formation, energy landscape, principal component analysis showed that the lead phytochemicals form stable and energetically stabilized complex with the target protein. Further, MM-PBSA analysis was performed to compare the Gibbs free energy of the Mpro-ligand bound and standard inhibitor bound complexes. The analysis revealed that the His-41, Cys145, Met49, and Leu27 amino acid residues were majorly responsible for the lower free energy of the complex. Drug likeness and physiochemical properties of the test compounds showed satisfactory results. Taken together, the study concludes that that the Isoquercetin and 10-Hydroxyaloin A phytochemical possess significant efficacy to bind SARS-Cov-2 Mpro active site. The study necessitates further in vitro and in vivo experimental validation of these lead phytochemicals to assess their anti-SARS-CoV-2 potential.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Molecular Docking Simulation , SARS-CoV-2
20.
Microb Pathog ; 157: 104954, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34033891

ABSTRACT

Coronaviruses are deadly and contagious pathogens that affects people in different ways. Researchers have increased their efforts in the development of antiviral agents against coronavirus targeting Mpro protein (main protease) as an effective drug target. The present study explores the inhibitory potential of characteristic and non-characteristic Withania somnifera (Indian ginseng) phytochemicals (n ≈ 100) against SARS-Cov-2 Mpro protein. Molecular docking studies revealed that certain W. somnifera compounds exhibit superior binding potential (-6.16 to -12.27 kcal/mol) compared to the standard inhibitors (-2.55 to -6.16 kcal/mol) including nelfinavir and lopinavir. The non-characteristic compounds (quercetin-3-rutinoside-7-glucoside, rutin and isochlorogenic acid B) exhibited higher inhibitory potential in comparison to characteristic W. somnifera compounds withanolide and withanone. Molecular dynamics (MD) simulation studies of the complex for 100 ns confirm favorable and stable binding of the lead molecule. The MMPBSA calculation of the last 10 ns of the protein-ligand complex trajectory exhibited stable binding of quercetin-3-rutinoside-7-glucoside at the active site of SARS-Cov-2 Mpro. Taken together, the study demonstrates that the non-characteristic compounds present in W. somnifera possess enhanced potential to bind SARS-Cov-2 Mpro active site. We further recommend in vitro and in vivo experimentation to validate the anti-SARS-CoV-2 potential of these lead molecules.


Subject(s)
COVID-19 , Panax , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/pharmacology , SARS-CoV-2 , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...