Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(5): e23522, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38445789

ABSTRACT

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.


Subject(s)
Carrier Proteins , Retina , Retinal Pigment Epithelium , Animals , Mice , Retinoids , Apolipoproteins B/genetics , Homeostasis
2.
bioRxiv ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38105975

ABSTRACT

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.

3.
bioRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961312

ABSTRACT

High apoB-containing low-density lipoproteins (LDL) and low apoA1-containing high-density lipoproteins (HDL) are associated with atherosclerosis. In search of a molecular regulator that could simultaneously and reciprocally control both LDL and HDL levels, we screened a microRNA (miR) library using human hepatoma Huh-7 cells. We identified miR-541-3p that both decreases apoB and increases apoA1 expression by inducing mRNA degradation of two different transcription factors, Znf101 and Casz1. Znf101 enhances apoB expression while Casz1 represses apoA1 expression. The hepatic knockdown of orthologous Zfp961 and Casz1 genes in mice altered plasma lipoproteins and reduced atherosclerosis without causing hepatic lipid accumulation, most likely by lowering hepatic triglyceride production, increasing HDL cholesterol efflux capacity, and reducing lipogenesis. Notably, human genetic variants in the MIR541, ZNF101, and CASZ1 loci are significantly associated with plasma lipids and lipoprotein levels. This study identifies miR-541-3p and Znf101/Casz1 as potential therapeutic agent and targets, respectively, to reduce plasma lipoproteins and atherosclerosis without causing liver steatosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...