Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Healthc Inform Res ; 28(1): 46-57, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35172090

ABSTRACT

OBJECTIVE: A primary brain tumor starts to grow from brain cells, and it occurs as a result of errors in the DNA of normal cells. Therefore, this study was carried out to analyze the two-dimensional (2D) texture, morphology, and statistical features of brain tumors and to perform a classification using artificial intelligence (AI) techniques. METHODS: AI techniques can help radiologists to diagnose primary brain tumors without using any invasive measurement techniques. In this paper, we focused on deep learning (DL) and machine learning (ML) techniques for texture, morphological, and statistical feature classification of three tumor types (namely, glioma, meningioma, and pituitary). T1-weighted magnetic resonance imaging (MRI) 2D scans were used for analysis and classification (multiclass and binary). A total of 102 features were calculated for each tumor, and the 20 most significant features were selected using the three-step feature selection method, which included removing duplicate features, Pearson correlations, and recursive feature elimination. RESULTS: From the predicted results of multiclass and binary classification, a long short-term memory binary classification (glioma vs. meningioma) showed the best performance, with an average accuracy, recall, precision, F1-score, and kappa coefficient of 97.7%, 97.2%, 97.5%, 97.0%, and 94.7%, respectively. CONCLUSIONS: The early diagnosis of primary brain tumors is very important because it can be the key to effective treatment. Therefore, this research presents a method for early diagnoses by effectively classifying three types of primary brain tumors.

2.
Cancers (Basel) ; 13(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810251

ABSTRACT

The optimal diagnostic and treatment strategies for prostate cancer (PCa) are constantly changing. Given the importance of accurate diagnosis, texture analysis of stained prostate tissues is important for automatic PCa detection. We used artificial intelligence (AI) techniques to classify dual-channel tissue features extracted from Hematoxylin and Eosin (H&E) tissue images, respectively. Tissue feature engineering was performed to extract first-order statistic (FOS)-based textural features from each stained channel, and cancer classification between benign and malignant was carried out based on important features. Recursive feature elimination (RFE) and one-way analysis of variance (ANOVA) methods were used to identify significant features, which provided the best five features out of the extracted six features. The AI techniques used in this study for binary classification (benign vs. malignant and low-grade vs. high-grade) were support vector machine (SVM), logistic regression (LR), bagging tree, boosting tree, and dual-channel bidirectional long short-term memory (DC-BiLSTM) network. Further, a comparative analysis was carried out between the AI algorithms. Two different datasets were used for PCa classification. Out of these, the first dataset (private) was used for training and testing the AI models and the second dataset (public) was used only for testing to evaluate model performance. The automatic AI classification system performed well and showed satisfactory results according to the hypothesis of this study.

3.
Curr Med Imaging ; 17(12): 1460-1472, 2021.
Article in English | MEDLINE | ID: mdl-33504310

ABSTRACT

AIMS: To prevent Alzheimer's disease (AD) from progressing to dementia, early prediction and classification of AD are important and they play a crucial role in medical image analysis. BACKGROUND: In this study, we employed a transfer learning technique to classify magnetic resonance (MR) images using a pre-trained convolutional neural network (CNN). OBJECTIVE: To address the early diagnosis of AD, we employed a computer-assisted technique, specifically the deep learning (DL) model, to detect AD. METHODS: In particular, we classified Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal control (NC) subjects using whole slide two-dimensional (2D) images. To illustrate this approach, we made use of state-of-the-art CNN base models, i.e., the residual networks Res- Net-101, ResNet-50, and ResNet-18, and compared their effectiveness in identifying AD. To evaluate this approach, an AD Neuroimaging Initiative (ADNI) dataset was utilized. We also showed uniqueness by using MR images selected only from the central slice containing left and right hippocampus regions to evaluate the models. RESULTS: All three models used randomly split data in the ratio of 70:30 for training and testing. Among the three, ResNet-101 showed 98.37% accuracy, better than the other two ResNet models, and performed well in multiclass classification. The promising results emphasize the benefit of using transfer learning, specifically when the dataset is low. CONCLUSION: From this study, we know that transfer learning helps to overcome DL problems mainly when the data available is insufficient to train a model from scratch. This approach is highly advantageous in medical image analysis to diagnose diseases like AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging , Neuroimaging
4.
Cytometry A ; 99(7): 698-706, 2021 07.
Article in English | MEDLINE | ID: mdl-33159476

ABSTRACT

Assessing the pattern of nuclear chromatin is essential for pathological investigations. However, the interpretation of nuclear pattern is subjective. In this study, we performed the texture analysis of nuclear chromatin in breast cancer samples to determine the nuclear pleomorphism score thereof. We used three different algorithms for extracting high-level texture features: the gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and gray-level size zone matrix (GLSZM). Using these algorithms, 12 GLCM, 11 GLRLM, and 16 GLSZM features were extracted from three scores of breast carcinoma (Scores 1-3). Classification accuracy was assessed using the support vector machine (SVM) and k-nearest neighbor (KNN) classification models. Three features of GLCM, 11 of GLRLM, and 12 of GLSZM were consistent across the three nuclear pleomorphism scores of breast cancer. Comparing Scores 1 and 3, the GLSZM feature large zone high gray-level emphasis showed the largest difference among breast cancer nuclear scores among all features of the three algorithms. The SVM and KNN classifiers showed favorable results for all three algorithms. A multiclass classification was performed to compare and distinguish between the scores of breast cancer. Texture features of nuclear chromatin can provide useful information for nuclear scoring. However, further validation of the correlations of histopathologic features, and standardization of the texture analysis process, are required to achieve better classification results. © 2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.


Subject(s)
Breast Neoplasms , Algorithms , Breast Neoplasms/genetics , Cell Nucleus , Chromatin , Female , Humans , Support Vector Machine
5.
Curr Med Imaging Rev ; 16(1): 27-35, 2020.
Article in English | MEDLINE | ID: mdl-31989891

ABSTRACT

BACKGROUND: In this study, we used a convolutional neural network (CNN) to classify Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal control (NC) subjects based on images of the hippocampus region extracted from magnetic resonance (MR) images of the brain. METHODS: The datasets used in this study were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). To segment the hippocampal region automatically, the patient brain MR images were matched to the International Consortium for Brain Mapping template (ICBM) using 3D-Slicer software. Using prior knowledge and anatomical annotation label information, the hippocampal region was automatically extracted from the brain MR images. RESULTS: The area of the hippocampus in each image was preprocessed using local entropy minimization with a bi-cubic spline model (LEMS) by an inhomogeneity intensity correction method. To train the CNN model, we separated the dataset into three groups, namely AD/NC, AD/MCI, and MCI/NC. The prediction model achieved an accuracy of 92.3% for AD/NC, 85.6% for AD/MCI, and 78.1% for MCI/NC. CONCLUSION: The results of this study were compared to those of previous studies, and summarized and analyzed to facilitate more flexible analyses based on additional experiments. The classification accuracy obtained by the proposed method is highly accurate. These findings suggest that this approach is efficient and may be a promising strategy to obtain good AD, MCI and NC classification performance using small patch images of hippocampus instead of whole slide images.


Subject(s)
Alzheimer Disease/classification , Alzheimer Disease/diagnostic imaging , Hippocampus/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Neural Networks, Computer , Brain Mapping , Case-Control Studies , Cognitive Dysfunction/classification , Cognitive Dysfunction/diagnostic imaging , Datasets as Topic , Humans
6.
Cancers (Basel) ; 11(12)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817111

ABSTRACT

Microscopic biopsy images are coloured in nature because pathologists use the haematoxylin and eosin chemical colour dyes for biopsy examinations. In this study, biopsy images are used for histological grading and the analysis of benign and malignant prostate tissues. The following PCa grades are analysed in the present study: benign, grade 3, grade 4, and grade 5. Biopsy imaging has become increasingly important for the clinical assessment of PCa. In order to analyse and classify the histological grades of prostate carcinomas, pixel-based colour moment descriptor (PCMD) and gray-level co-occurrence matrix (GLCM) methods were used to extract the most significant features for multilayer perceptron (MLP) neural network classification. Haar wavelet transformation was carried out to extract GLCM texture features, and colour features were extracted from RGB (red/green/blue) colour images of prostate tissues. The MANOVA statistical test was performed to select significant features based on F-values and P-values using the R programming language. We obtained an average highest accuracy of 92.7% using level-1 wavelet texture and colour features. The MLP classifier performed well, and our study shows promising results based on multi-feature classification of histological sections of prostate carcinomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...