Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioorg Med Chem Lett ; 25(16): 3203-7, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26115573

ABSTRACT

IRAK4 plays a key role in TLR/IL-1 signaling. Previous efforts identified a series of aminopyrimidine IRAK4 inhibitors that possess good potency, but modest kinase selectivity. Exploration of substituents at the C-2 and C-5 positions generated compounds that maintained IRAK4 potency and improved kinase selectivity. Additionally, it was found that the pyrimidine core could be replaced with a pyridine and still retain potency and kinase selectivity. The optimization efforts led to compound 26 which had an IRAK4 IC50 of 0.7 nM, an IC50 of 55 nM on THP-1 cells stimulated with LPS, a TLR4 agonist, and greater than 100-fold selectivity versus 96% of a panel of 306 kinases.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line , High-Throughput Screening Assays , Humans , Lipopolysaccharides/pharmacology , Structure-Activity Relationship , Substrate Specificity , Toll-Like Receptor 4/antagonists & inhibitors
2.
Bioorg Med Chem Lett ; 25(9): 1836-41, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25870132

ABSTRACT

Interleukin receptor-associated kinase 4 (IRAK4) is a critical element of the Toll-like/interleukin-1 receptor inflammation signaling pathway. A screening campaign identified a novel diaminopyrimidine hit that exhibits weak IRAK4 inhibitory activity and a ligand efficiency of 0.25. Hit-to-lead activities were conducted through independent SAR studies of each of the four pyrimidine substituents. Optimal activity was observed upon removal of the pyrimidine C-4 chloro substituent. The intact C-6 carboribose is required for IRAK4 inhibition. Numerous heteroaryls were tolerated at the C-5 position, with azabenzothiazoles conferring the best activities. Aminoheteroaryls were preferred at the C-2 position. These studies led to the discovery of inhibitors 35, 36, and 38 that exhibit nanomolar inhibition of IRAK4, improved ligand efficiencies, and modest kinase selectivities.


Subject(s)
Drug Discovery , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Dose-Response Relationship, Drug , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...