Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 366: 128159, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272681

ABSTRACT

Biohydrogen (bio-H2) is regarded as a clean, non-toxic, energy carrier and has enormous potential for transforming fossil fuel-based economy. The development of a continuous high-rate H2 production with low-cost economics following an environmentally friendly approach should be admired for technology demonstration. Thus, the current review discusses the biotechnological and thermochemical pathways for H2 production. Thermochemical conversion involves pyrolysis and gasification routes, while biotechnological involves light-dependent processes (e.g., direct and indirect photolysis, photo/ dark fermentation strategies). Moreover, environmentally friendly technologies can be created while utilizing renewable energy sources including lignocellulosic, wastewater, sludge, microalgae, and others, which are still being developed. Lifecycle assessment (LCA) evaluates and integrates the economic, environmental, and social performance of H2 production from biomass, microalgae, and biochar. Moreover, system boundaries evaluation, i.e., global warming potential, acidification, eutrophication, and sensitivity analysis could lead in development of sustainable bioenergy transition with high economic and environmental benefits.


Subject(s)
Hydrogen , Microalgae , Hydrogen/metabolism , Fermentation , Biomass , Microalgae/metabolism , Fossil Fuels , Biofuels
2.
New Phytol ; 229(5): 2873-2885, 2021 03.
Article in English | MEDLINE | ID: mdl-33131088

ABSTRACT

An emerging experimental framework suggests that plants under biotic stress may actively seek help from soil microbes, but empirical evidence underlying such a 'cry for help' strategy is limited. We used integrated microbial community profiling, pathogen and plant transcriptive gene quantification and culture-based methods to systematically investigate a three-way interaction between the wheat plant, wheat-associated microbiomes and Fusarium pseudograminearum (Fp). A clear enrichment of a dominant bacterium, Stenotrophomonas rhizophila (SR80), was observed in both the rhizosphere and root endosphere of Fp-infected wheat. SR80 reached 3.7 × 107 cells g-1 in the rhizosphere and accounted for up to 11.4% of the microbes in the root endosphere. Its abundance had a positive linear correlation with the pathogen load at base stems and expression of multiple defence genes in top leaves. Upon re-introduction in soils, SR80 enhanced plant growth, both the below-ground and above-ground, and induced strong disease resistance by boosting plant defence in the above-ground plant parts, but only when the pathogen was present. Together, the bacterium SR80 seems to have acted as an early warning system for plant defence. This work provides novel evidence for the potential protection of plants against pathogens by an enriched beneficial microbe via modulation of the plant immune system.


Subject(s)
Soil Microbiology , Soil , Fusarium , Plant Roots , Rhizosphere , Stenotrophomonas
SELECTION OF CITATIONS
SEARCH DETAIL
...