Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 142(1): 83-91, 1987 Oct 06.
Article in English | MEDLINE | ID: mdl-2446886

ABSTRACT

The two major pathways for Ca2+ entry into cells are potential-sensitive channels and receptor-operated channels. The main object of this investigation was to identify which mechanism regulates Ca2+ entry into human platelets. Platelet stimulation with thrombin, adenosine diphosphate, platelet activating factor and arachidonic acid resulted in a concentration-dependent 2.5-3-fold increase in cytoplasmic free calcium concentration over the basal levels (140 +/- 32 nM or 104 +/- 21 respectively) as measured with the fluorescent dyes Quin-2 and Fura-2. Adrenaline and collagen had no effect in promoting intracellular Ca2+ increase as measured with Quin-2 and little effect when measured with Fura-2. Incubation of Quin-2-loaded platelets with the calcium antagonists verapamil and diltiazem, which are known to inhibit Ca2+ entry from voltage-gated channels in many types of cells, over the concentration range 10(-8) - 10(-4) M did not alter significantly either the resting or the cytoplasmic free Ca2+ after stimulation of platelets by several agonists. Moreover, the calcium antagonists exhibited little or no effect on aggregation and 5-hydroxytryptamine secretion induced by platelet activating factor, adenosine diphosphate, collagen or arachidonic acid in whole blood, platelet-rich plasma or washed platelets when employed at concentration ranges as above. Similar results were obtained in washed thrombin-stimulated platelets. High doses of verapamil (but not diltiazem) inhibited platelet aggregation and secretion in response to adrenaline. Direct radioligand binding studies with (-)[3H]desmethoxyverapamil showed that platelet membranes have no receptors for this drug, suggesting that Ca2+ entry occurs in human platelets via a pathway different from potential-sensitive Ca2+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Blood Platelets/metabolism , Ion Channels/drug effects , Receptors, Nicotinic/blood , Verapamil/pharmacology , Adult , Animals , Arachidonic Acid , Arachidonic Acids/pharmacology , Blood Coagulation/drug effects , Calcium/metabolism , Calcium Channels , Electrophysiology , Humans , In Vitro Techniques , Platelet Aggregation/drug effects , Rats , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...