Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Leuk Res ; 123: 106964, 2022 12.
Article in English | MEDLINE | ID: mdl-36335655

ABSTRACT

Acute lymphoblastic leukemias (ALL) are the most frequent cancer in children and derive most often from B-cell precursors. Current survival rates roughly reach 90% at 10 years from diagnosis. However, 15-20% of children still relapse with a significant risk of death. Our previous work showed that the transmembrane protein CD9 plays a major role in lymphoblasts migration into sanctuary sites, especially in testis, through the activation of RAC1 signaling upon blasts stimulation with C-X-C chemokine ligand 12 (CXCL12). Here, we identified common factors shared by the bone marrow and extramedullary niches which could upregulate CD9 expression and function. We found that low oxygen levels enhance CD9 expression both at mRNA and protein levels. We further determined that Hypoxia Inducible Factor 1α (HIF1α), the master transcription factor involved in hypoxia response, binds directly CD9 promoter and induce CD9 transcription. We also showed that CD9 protein is crucial for leukemic cell adhesion and migration at low oxygen levels, possibly through its action on RAC1 signaling. Mouse xenograft experiments indicate that HIF1α signaling pathway promotes ALL cells engraftment in a CD9-dependent manner. The present work increments our understanding of CD9 implication in ALL pathogenesis.


Subject(s)
Hypoxia , Signal Transduction , Male , Humans , Mice , Animals , Tetraspanin 29/genetics , Tetraspanin 29/metabolism , Cell Adhesion , Oxygen
2.
Cancers (Basel) ; 11(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810292

ABSTRACT

BACKGROUND: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. METHODS: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. RESULTS: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. CONCLUSIONS: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes.

3.
Haematologica ; 104(10): 2017-2027, 2019 10.
Article in English | MEDLINE | ID: mdl-30923103

ABSTRACT

Internal tandem duplication in Fms-like tyrosine kinase 3 (FLT3-ITD) is the most frequent mutation observed in acute myeloid leukemia (AML) and correlates with poor prognosis. FLT3 tyrosine kinase inhibitors are promising for targeted therapy. Here, we investigated mechanisms dampening the response to the FLT3 inhibitor quizartinib, which is specific to the hematopoietic niche. Using AML primary samples and cell lines, we demonstrate that convergent signals from the hematopoietic microenvironment drive FLT3-ITD cell resistance to quizartinib through the expression and activation of the tyrosine kinase receptor AXL. Indeed, cytokines sustained phosphorylation of the transcription factor STAT5 in quizartinib-treated cells, which enhanced AXL expression by direct binding of a conserved motif in its genomic sequence. Likewise, hypoxia, another well-known hematopoietic niche hallmark, also enhanced AXL expression. Finally, in a xenograft mouse model, inhibition of AXL significantly increased the response of FLT3-ITD cells to quizartinib exclusively within a bone marrow environment. These data highlight a new bypass mechanism specific to the hematopoietic niche that hampers the response to quizartinib through combined upregulation of AXL activity. Targeting this signaling offers the prospect of a new therapy to eradicate resistant FLT3-ITD leukemic cells hidden within their specific microenvironment, thereby preventing relapses from FLT3-ITD clones.


Subject(s)
Benzothiazoles/pharmacology , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/metabolism , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins/biosynthesis , Receptor Protein-Tyrosine Kinases/biosynthesis , STAT5 Transcription Factor/metabolism , Tumor Microenvironment , fms-Like Tyrosine Kinase 3/metabolism , Cell Hypoxia , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Leukemic/drug effects , Humans , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , STAT5 Transcription Factor/genetics , Up-Regulation/drug effects , fms-Like Tyrosine Kinase 3/genetics , Axl Receptor Tyrosine Kinase
4.
BMC Cancer ; 18(1): 1098, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30419846

ABSTRACT

BACKGROUND: Atypical Myeloproliferative Neoplasms (aMPN) share characteristics of MPN and Myelodysplastic Syndromes. Although abnormalities in cytokine signaling are common in MPN, the pathophysiology of atypical MPN still remains elusive. Since deregulation of microRNAs is involved in the biology of various cancers, we studied the miRNome of aMPN patients. METHODS: MiRNome and mutations in epigenetic regulator genes ASXL1, TET2, DNMT3A, EZH2 and IDH1/2 were explored in aMPN patients. Epigenetic regulation of miR-10a and HOXB4 expression was investigated by treating hematopoietic cell lines with 5-aza-2'deoxycytidine, valproic acid and retinoic acid. Functional effects of miR-10a overexpression on cell proliferation, differentiation and self-renewal were studied by transducing CD34+ cells with lentiviral vectors encoding the pri-miR-10a precursor. RESULTS: MiR-10a was identified as the most significantly up-regulated microRNA in aMPN. MiR-10a expression correlated with that of HOXB4, sitting in the same genomic locus. The transcription of these two genes was increased by DNA demethylation and histone acetylation, both necessary for optimal expression induction by retinoic acid. Moreover, miR-10a and HOXB4 overexpression seemed associated with DNMT3A mutation in hematological malignancies. However, overexpression of miR-10a had no effect on proliferation, differentiation or self-renewal of normal hematopoietic progenitors. CONCLUSIONS: MiR-10a and HOXB4 are overexpressed in aMPN. This overexpression seems to be the result of abnormalities in epigenetic regulation mechanisms. Our data suggest that miR-10a could represent a simple marker of transcription at this genomic locus including HOXB4, widely recognized as involved in stem cell expansion.


Subject(s)
Gene Expression , Homeodomain Proteins/genetics , MicroRNAs/genetics , Myeloproliferative Disorders/genetics , Transcription Factors/genetics , Animals , Biomarkers , Case-Control Studies , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Genotype , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemoid Reaction/genetics , Mice , Mutation , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Transcription Factors/metabolism
5.
J Cell Physiol ; 233(1): 338-349, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28247929

ABSTRACT

Hematopoietic stem cells (HSCs), which are located in the bone marrow, also circulate in cord and peripheral blood. Despite high availability, HSCs from steady state peripheral blood (SSPB) are little known and not used for research or cell therapy. We thus aimed to characterize and select HSCs from SSPB by a direct approach with a view to delineating their main functional and metabolic properties and the mechanisms responsible for their maintenance. We chose to work on Side Population (SP) cells which are highly enriched in HSCs in mouse, human bone marrow, and cord blood. However, no SP cells from SSBP have as yet been characterized. Here we showed that SP cells from SSPB exhibited a higher proliferative capacity and generated more clonogenic progenitors than non-SP cells in vitro. Furthermore, xenotransplantation studies on immunodeficient mice demonstrated that SP cells are up to 45 times more enriched in cells with engraftment capacity than non-SP cells. From a cell regulation point of view, we showed that SP activity depended on O2 concentrations close to those found in HSC niches, an effect which is dependent on both hypoxia-induced factors HIF-1α and HIF-2α. Moreover SP cells displayed a reduced mitochondrial mass and, in particular, a lower mitochondrial activity compared to non-SP cells, while they exhibited a similar level of glucose incorporation. These results provided evidence that SP cells from SSPB displayed properties of very primitive cells and HSC, thus rendering them an interesting model for research and cell therapy.


Subject(s)
Blood Cells/metabolism , Energy Metabolism , Hematopoietic Stem Cells/metabolism , Side-Population Cells/metabolism , Animals , Antigens, CD34/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Blood Cells/transplantation , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Female , Fetal Blood/cytology , Glucose/metabolism , Hematopoietic Stem Cell Transplantation , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mitochondria/metabolism , Phenotype , RNA Interference , Side-Population Cells/transplantation , Transfection
6.
Stem Cell Res ; 21: 124-131, 2017 05.
Article in English | MEDLINE | ID: mdl-28445828

ABSTRACT

Culture conditions used for the expansion of hematopoietic stem and progenitor cells (HSCs and HPCs, collectively HSPCs) should ideally favor the self renewal of long-term HSCs. At 20% O2, the synthesis of HIF-1α is balanced by its hydroxylation and proteasomal degradation. This favors HSPC differentiation, but can be prevented by culturing CD34+ cord blood cells in the presence of dimethyloxaloylglycine (DMOG). This differentiation may also be reduced by culturing the cells in the presence of Stemregenin 1, an antagonist of the aryl hydrocarbon receptor (AhR). The objective of this study was to investigate how hypoxia, DMOG and Stemregenin 1 might affect the expansion of HSPCs with the aim of identifying optimal conditions for expansion in culture. It was found that DMOG decreased proliferation but was effective in preserving the number of cells in the primitive hematopoietic sub-populations in vitro. The effect of DMOG was similar to hypoxia, although differences were observed with regard to the side population and CD34+ sub-populations. Stemregenin 1 on the other hand increased the size of the primitive as well as the other HSC sub-populations. The use of Stemregenin 1 with DMOG increased the proportion of primitive HSCs to 3.54% compared to 2.61% for Stemregenin 1 alone. In vivo engraftment studies confirmed these findings and showed that fewer cells (3710) are required for long-term engraftment when HSCs are grown in Stemregenin 1 together with hypoxia than in Stemregenin 1 under conditions of normoxia (13430).


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Glycine/pharmacology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Purines/pharmacology , Animals , Antigens, CD34/metabolism , Cell Count , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Colony-Forming Units Assay , Female , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Humans , Mice , Oxygen/pharmacology , Phenotype , Side-Population Cells/cytology
7.
J Pathol ; 237(1): 14-24, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25965880

ABSTRACT

A tyrosine kinase network composed of the TAM receptor AXL and the cytoplasmic kinases LYN and SYK is involved in nilotinib-resistance of chronic myeloid leukaemia (CML) cells. Here, we show that the E3-ubiquitin ligase CBL down-regulation occurring during prolonged drug treatment plays a critical role in this process. Depletion of CBL in K562 cells increases AXL and LYN protein levels, promoting cell resistance to nilotinib. Conversely, forced expression of CBL in nilotinib-resistant K562 cells (K562-rn) dramatically reduces AXL and LYN expression and resensitizes K562-rn cells to nilotinib. A similar mechanism was found to operate in primary CML CD34(+) cells. Mechanistically, the E3-ligase CBL counteracts AXL/SYK signalling, promoting LYN transcription by controlling AXL protein stability. Surprisingly, the role of AXL in resistance was independent of its ligand GAS6 binding and its TK activity, in accordance with a scaffold activity for this receptor being involved in this cellular process. Collectively, our results demonstrate a pivotal role for CBL in the control of a tyrosine kinase network mediating resistance to nilotinib treatment in CML cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins/metabolism , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , src-Family Kinases/metabolism , Enzyme Stability , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Ligands , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-cbl/genetics , RNA Interference , Receptor Protein-Tyrosine Kinases/genetics , Syk Kinase , Time Factors , Transfection , src-Family Kinases/genetics , Axl Receptor Tyrosine Kinase
8.
PLoS Pathog ; 11(3): e1004702, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25747674

ABSTRACT

Cytomegalovirus (CMV) is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αß and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αß T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αß T cell compromised patients.


Subject(s)
Herpesviridae Infections/immunology , Immunity, Cellular , Muromegalovirus/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Herpesviridae Infections/genetics , Herpesviridae Infections/pathology , Mice , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes/pathology
9.
J Cell Physiol ; 229(12): 2153-65, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24912010

ABSTRACT

We analyzed the effect of exposure to hypoxic/hypercapnic (HH) gas mixture (5% O2 /9% CO2 ) on the maintenance of functional cord blood CD34(+) hematopoietic stem and progenitor cells in severe hypothermia (4°C) employing the physiological and proteomic approaches. Ten-day exposure to HH maintained the Day 0 (D-0) level of hematopoietic stem cells as detected in vivo on the basis of hematopoietic repopulation of immunodeficient mice-short-term scid repopulating cells (SRC). Conversely, in the atmospheric air (20% O2 /0.05% CO2 ), usual condition used for cell storage at 4°C, stem cell activity was significantly decreased. Also, HH doubled the survival of CD34(+) cells and committed progenitors (CFCs) with respect to the atmospheric air (60% vs. 30%, respectively). Improved cell maintenance in HH was associated with higher proportion of aldehyde dehydrogenase (ALDH) positive cells. Cell-protective effects are associated with an improved maintenance of the plasma and mitochondrial membrane potential and with a conversion to the glycolytic energetic state. We also showed that HH decreased apoptosis, despite a sustained ROS production and a drop of ATP amount per viable cell. The proteomic study revealed that the global protein content was better preserved in HH. This analysis identified: (i) proteins sensitive or insensitive to hypothermia irrespective of the gas phase, and (ii) proteins related to the HH cell-protective effect. Among them are some protein families known to be implicated in the prolonged survival of hibernating animals in hypothermia. These findings suggest a way to optimize short-term cell conservation without freezing.


Subject(s)
Fetal Blood/physiology , Hematopoietic Stem Cells/physiology , Stem Cells/physiology , Adaptation, Physiological , Animals , Antigens, CD34/metabolism , Carbon Dioxide/pharmacology , Cell Proliferation/drug effects , Fetal Blood/cytology , Fetal Blood/drug effects , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hypercapnia/physiopathology , Hypoxia/physiopathology , Mice , Oxygen/pharmacology , Stem Cells/cytology , Stem Cells/drug effects
10.
PLoS One ; 8(9): e74361, 2013.
Article in English | MEDLINE | ID: mdl-24069300

ABSTRACT

BACKGROUND: Xenotransplantation models allowing the identification and quantification of human Hematopoietic stem cells (HSC) in immunodeficient mice remain the only way to appropriately address human HSC function despite the recent progress in phenotypic characterization. However, these in vivo experiments are technically demanding, time consuming and expensive. Indeed, HSCs engraftment in mouse requires pre-conditioning of animals either by irradiation or cytotoxic drugs to allow homing of injected cells in specific stem cell niches and their subsequent expansion and differentiation in bone marrow. Recently, the development of busulfan pre-conditioning of animals improved the flexibility of experimentation in comparison with irradiation. DESIGN AND METHODS: In order to further facilitate the organization of these complex experiments we investigated the effect of extending the period between mice pre-conditioning and cell injection on the engraftment efficiency. In the meantime, we also explored the role of busulfan doses, mouse gender and intravenous injection route (caudal or retro orbital) on engraftment efficiency. RESULTS AND CONCLUSION: We showed that a period of up to 7 days did not modify engraftment efficiency of human HSCs in NSG model. Moreover, retro orbital cell injection to female mice pre-conditioned with 2x25 mg/kg of busulfan seems to be the best adapted schema to detect the human HSC in xenotransplantation experiments.


Subject(s)
Busulfan/pharmacology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Severe Combined Immunodeficiency , Transplantation Conditioning , Animals , Body Weight/drug effects , Busulfan/administration & dosage , Cell Differentiation/drug effects , Female , Graft Survival , Humans , Male , Mice , Severe Combined Immunodeficiency/mortality , Severe Combined Immunodeficiency/therapy , Sex Factors , Time Factors , Transplantation, Heterologous
11.
Stem Cell Res ; 11(2): 736-42, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23743265

ABSTRACT

New adult stem cell sources, devoid of the technical/ethical/economical barriers of those presently available, would favor the ongoing development of in vitro cell engineering and transplantation. Hematopoietic transplantation opened the way to and remains the most successful cell transplantation procedure. CD34+ cells that include hematopoietic stem cells (HSCs) and hematopoietic progenitors (HPs) are presently harvested from bone marrow (BM), cord blood or peripheral blood (after being mobilized from BM). The panel of potential donors, the quantities of collected cells and some other technical/medical problems still represent limiting factors to their transplantation in some patients. Steady state peripheral blood (SSPB) contains very low frequencies of CD34+ cells. They are trapped in leukoreduction filters (LRFs), which are discarded after the preparation of therapeutic red blood cell concentrates from individual blood donations. We recently developed a procedure allowing the easy and rapid elution of CD34+ cells from LRFs and we showed that they are functionally similar to those harvested from other sources. After providing an overview of the sources, interests and limitations of therapeutic HSCs presently available, we will provide arguments based on our and others' results suggesting that SSPB could become an attractive source of HSCs for hematopoietic transplantation and of other cell types for various research/development procedures.


Subject(s)
Cell Engineering/methods , Hematopoietic Stem Cells/cytology , Leukocyte Reduction Procedures/instrumentation , Animals , Blood Preservation , Flow Cytometry , Hematopoietic Stem Cells/immunology , Humans , Stem Cell Research
12.
Stem Cell Res ; 11(1): 625-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23651585

ABSTRACT

This report brings the first experimental evidence for the presence of long-term (LT) repopulating hematopoietic stem cells (HSCs) and Side Population (SP) cells within human steady state peripheral blood CD34(+) cells. Ex vivo culture, which reveals the LT-HSC, also increases short-term (ST) HSC engraftment capacity and SP cell number (as well as the SP subpopulations defined on the basis of CD38, CD90 and CD133 expression) which are very low in freshly isolated cells. Thus, ex vivo incubation either allows the expansion of the small fraction of HSCs or reveals "Scid Repopulating Cells - SRC" that are present in the initial CD34(+) cell population but unable to engraft. In addition, among these CD34(+) cells, we confirm the presence of committed progenitors at frequencies similar to those found in cord blood CD34(+) cells. These cells, obtained from leukoreduction filters (LRFs) and rejected in the course of the preparation of red blood cell concentrates, are an abundant and reliable material for obtaining committed progenitors, short- and long-term HSCs of therapeutic interest, especially after the ex vivo expansion phase. Our results open a perspective to set up new therapeutic protocols using expanded LRFs-recovered CD34(+) cells as a source of HSCs for autologous or allogeneic transplantation.


Subject(s)
Hematopoietic Stem Cells/cytology , Side-Population Cells/cytology , Animals , Cell Separation , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Side-Population Cells/immunology , Side-Population Cells/metabolism
13.
Stem Cell Rev Rep ; 8(1): 1-15, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21537995

ABSTRACT

LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine.


Subject(s)
Leukemia Inhibitory Factor/physiology , Signal Transduction , Stem Cells/physiology , Animals , Gene Expression , Gene Expression Regulation , Genetic Pleiotropy , Humans , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism
14.
J Cell Physiol ; 227(6): 2750-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21913190

ABSTRACT

The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool.


Subject(s)
Cell Communication , Cell Differentiation , Cell Proliferation , Fetal Blood/cytology , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Oxygen/metabolism , Aldehyde Dehydrogenase/metabolism , Antigens, CD34/metabolism , Biomarkers/metabolism , Cell Culture Techniques , Cells, Cultured , Coculture Techniques , Hematopoietic Stem Cells/immunology , Humans , Interleukin-6/metabolism , Mesenchymal Stem Cells/immunology , Time Factors
15.
Exp Hematol ; 38(10): 847-51, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20547202

ABSTRACT

OBJECTIVE: Regulation of hematopoiesis depends on cytokines, cellular interactions, transcription, and metabolic factors. Among the latter, O(2) has been neglected for a long time. Recently, an increasing number of publications evidenced the regulatory role of physiological low O(2) concentrations (0.1-5%; similar to those in bone marrow) on the in vitro behavior of hematopoietic stem cells. This brief review utilizes the article of Eliasson and colleagues in this Journal to summarize the major results and questions about the relationships between O(2) and hematopoiesis. MATERIALS AND METHODS: In order to be concise and interesting for readers unfamiliar with this field, we selected only the most significant data that either reinforce or contradict the conclusions of Eliasson et al., but we also provide references of reviews with a more detailed bibliography. RESULTS: A critical analysis of some key publications provides partial answers to three important questions: is the term hypoxia appropriate to describe physiological low O(2) concentrations? Is a very low O(2) level sufficient to control the quiescence/slow cycling balance of hematopoietic stem cells? Is the O(2) concentration able to modify the effect of cytokines on hematopoietic stem cells? CONCLUSIONS: We propose to use in situ normoxia instead of the confusing term hypoxia when working with normal cells at physiological low O(2) concentrations. We suggest that a very low O(2) concentration is necessary but not sufficient to induce hematopoietic stem cell quiescence. We review some articles showing that O(2) variations modify the effect of cytokines.


Subject(s)
Cell Cycle/physiology , Cell Proliferation , Hematopoietic Stem Cells/cytology , Oxygen/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cytokines/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Humans , Models, Biological
16.
Transfusion ; 50(10): 2152-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20456706

ABSTRACT

BACKGROUND: Human CD34+ cells are mandatory to study many aspects of human hematopoiesis. Their low frequency in blood or marrow and ethical reasons limit their obtainment in large quantities. Leukoreduction filters (LRFs) are discarded after preparation of red blood cells. The CD34+ cell concentration in healthy donor blood is low (1×10(3) -4×10(3) /mL), but their number trapped in one LRF after filtration of 400 to 450mL of blood is high (0.4×10(6) -1.6×10(6) ). STUDY DESIGN AND METHODS: To develop a procedure allowing obtainment of purified CD34+ cells from LRFs with a good yield, white blood cell (WBC) recoveries after a 500-mL continuous or after sequential elution (50- or 20-mL fractions) were compared. Different WBC and mononuclear cell (MNC) centrifugation methods were tested to minimize their PLT contamination before the CD34+ cell immunomagnetic selection. Cell functionality was finally analyzed under various culture conditions. RESULTS: The 20-mL back-flushing of LRFs allowed the most efficient WBC recovery. The next steps (110×g centrifugation, MNC separation on Ficoll, and washes) resulted in a cell suspension in which the lymphocyte recovery was approximately 76±10% and the PLT contamination below 1.6%. After immunomagnetic selection, 4×10(5) to 6×10(5) cells containing approximately 85% of functional CD34+ cells were obtained. CONCLUSION: This procedure allows the easy, rapid (<5hr), and efficient preparation of large quantities of CD34+ cells having functional activities similar to those of CD34+ cells from other sources. Therefore, easily available and virally safe, LRFs represent an important and regular WBC source to work with human CD34+ cells, but also with other WBC types.


Subject(s)
Antigens, CD34/metabolism , Leukocyte Reduction Procedures/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Blood Donors , Cell Differentiation , Cell Separation/methods , Flow Cytometry , Humans
17.
Transfusion ; 50(1): 120-7, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19821946

ABSTRACT

BACKGROUND: The classification of patients into "good" or "poor" mobilizers is based on CD34+ cell count in their peripheral blood (PB) after granulocyte-colony-stimulating factor (G-CSF) injection. We hypothesized that, apart from their mobilization from marrow to the blood, the response to G-CSF of CD34+ cells also includes activation of proliferation, metabolic activity, and proliferative capacity. STUDY DESIGN AND METHODS: Mobilized PB CD34+ cells purified from samples obtained by cytapheresis of multiple myeloma or non-Hodgkin's lymphoma patients of both good (>50 CD34+ cells/microL) and poor (< or =50 CD34+ cells/microL) mobilizers were studied. The initial cell cycle state of CD34+ cells after selection and their kinetics of activation (exit from G(0) phase) during ex vivo culture were analyzed. Their proliferative capacity was estimated on the basis of ex vivo generation of total cells, CD34+ cells, and colony-forming cells (CFCs), in a standardized expansion culture. Indirect insight in metabolic activity was obtained on the basis of their survival (viability and apoptosis follow-up) during the 7-day-long conservation in hypothermia (4 degrees C) in the air or in atmosphere containing 3% O(2)/6% CO(2). RESULTS: CD34+ cells obtained from good mobilizers were in lower proportion in the G(0) phase, their activation in a cytokine-stimulated culture was accelerated, and they exhibited a lower ex vivo expansion efficiency than those from poor mobilizers. The resistance to hypothermia of good immobilizers' CD34+ cells is impaired. CONCLUSION: A good response to G-CSF mobilization treatment is associated with a higher degree of proliferative and metabolic activation of mobilized CD34+ cells with a decrease in their expansion capacity.


Subject(s)
Cryopreservation , Energy Metabolism/physiology , Granulocyte Colony-Stimulating Factor/administration & dosage , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cells , Antigens, CD34/metabolism , Apoptosis/physiology , Carbon Dioxide/metabolism , Cell Division/physiology , Cell Survival/physiology , G1 Phase/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Oxygen/metabolism , Resting Phase, Cell Cycle/physiology
18.
Transfusion ; 49(8): 1738-46, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19413727

ABSTRACT

BACKGROUND: During short-term storage of hematopoietic cells (HCs) at 4°C a substantial decline in number and in functional capacity of progenitors occurs after 3 days. We hypothesized that physiologic O2 and CO2 concentrations of hematopoietic tissue microenvironment (approx. 3% O2 and approx. 6% CO2) could improve cell viability and functionality during storage at 4°C. STUDY DESIGN AND METHODS: Mobilized peripheral blood (PB) CD34+ cells from multiple myeloma or non-Hodgkin's lymphoma patients were stored in flasks containing air (approx. 20% O2 and approx. 0.05% CO2) or 3% O2/6% CO2 atmosphere, for 3, 5, and 7 days at 4°C. The total number of cells, the number of cells in G0 or G1 phase of cell cycle, and the apoptosis rate were determined. The functional capacity of stored cells was assessed by the capacity of progenitors to form colonies in methylcellulose (colony-forming cells [CFCs]) and of stem cells to repopulate the bone marrow (BM) of immunodeficient mice (SCI D-repopulating cell [SRC] assay). RESULTS: The total number of viable cells and cells in G1 phase as well as the number of total CFCs were significantly higher at 3% O2/6% CO2 than in air at all time points. Cells in G0 phase and SRC were equally preserved in both conditions. CONCLUSION: Atmosphere with low O2 and high CO2 concentration (3% O2/6% CO2) in hypothermia (+4°C) during 7 days of storage prevents cell damage and preserves a high number of functional HSCs and progenitors mobilized in PB by granulocyte-colony-stimulating factor.


Subject(s)
Carbon Dioxide/pharmacology , Hematopoietic Stem Cells/metabolism , Oxygen/pharmacology , Refrigeration , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Female , G1 Phase/drug effects , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/cytology , Humans , Lymphoma, Non-Hodgkin/metabolism , Male , Mice , Mice, SCID , Multiple Myeloma/metabolism , Peripheral Blood Stem Cell Transplantation , Resting Phase, Cell Cycle/drug effects , Transplantation, Heterologous
19.
Eur Cytokine Netw ; 20(1): 10-6, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19318315

ABSTRACT

Co-culture of haematopoietic cells with a stromal cell layer does not mimic the physiological, micro-environmental niche, whose major feature is a low oxygen (O2) concentration. Thus, in order to study the effects of IL-17 in a context which better approximates the physiological state, we investigated its effects on cell expansion, colony-forming ability, and the phenotypical profile of normal, human blood CD34+ cells co-cultured for five days with MSC layers at various O2 concentrations (20%, 12.5% and 3% O2. We demonstrated that IL-17 enhances CD34+ and total CFC production during the five days of MSC/CD34+ co-culture. This effect depends upon the O2 concentration, reaching its maximum at 3% O2, and is more pronounced on erythroid progenitors (BFU-E). In addition, the stimulation of IL-6 production by IL-17 in MSC cultures and co-cultures is enhanced by low O2 concentration. The expression of some differentiation markers (CD34, CD13 and CD41) on haematopoietic cells in co-cultures also depends upon the oxygen concentration. Our results strengthen the concept that physiological levels of O2 (mistakenly called hypoxia), should be considered as an important environmental factor that significantly influences cytokine activity.


Subject(s)
Erythroid Precursor Cells/drug effects , Erythroid Precursor Cells/metabolism , Interleukin-17/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Oxygen/metabolism , Antigens, CD34/metabolism , Cell Hypoxia/physiology , Coculture Techniques , Colony-Forming Units Assay , Erythroid Precursor Cells/cytology , Hematopoiesis/drug effects , Hematopoiesis/physiology , Humans , Interleukin-6/biosynthesis , Mesenchymal Stem Cells/cytology
20.
Cancer Biol Ther ; 6(6): 912-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17538248

ABSTRACT

It is an important challenge to better understand the mechanisms of tyrosine kinase inhibitors-induced apoptosis in CML cells. Thus, we have investigated how this apoptosis can be modulated by extracellular factors. Apoptosis induced by imatinib and nilotinib was determined in BCR-ABL expressing cell lines and primary CML CD34+ cells. Both molecules induced apoptosis of BCR-ABL expressing cells. This apoptosis was inhibited by protein synthesis inhibition in both K562 and CML CD34+ cells. In K562, 80% inhibition of the BCR-ABL auto-phosphorylation by either imatinib or nilotinib induced a two fold increase in Bim-EL expression and induction of apoptosis in 48 h. Bim accumulation preceded apoptosis induction which was completely abolished by depletion in Bim using shRNA. However, the anti-proliferative effect of imatinib was preserved in Bim-depleted cells. When K562 cells were cultured in a cytokine containing medium, the pro-apoptotic effect of nilotinib was decreased by 68% and this was related to a decrease in Bim-EL dephosphorylation and accumulation. Similarly, the presence of a combination of cytokines inhibited 88% of NIL- and 39% of IMA-induced apoptosis in primary CML CD34+ cells. In conclusion, both nilotinib and imatinib induce apoptosis through Bim accumulation independently of cell cycle arrest. However, the pro-apoptotic effect of both molecules can be attenuated by the presence of cytokines and growth factors, particularly concerning nilotinib. Thus BCR-ABL inhibition restores the cytokine dependence but is not sufficient to induce apoptosis when other signaling pathways are activated.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/metabolism , Apoptosis , Cytokines/metabolism , Gene Expression Regulation, Leukemic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Membrane Proteins/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins/metabolism , Pyrimidines/pharmacology , Animals , Antigens, CD34/biosynthesis , Bcl-2-Like Protein 11 , Benzamides , Cell Line, Tumor , Humans , Imatinib Mesylate , K562 Cells , Mice , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...