Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(9): e1011459, 2023 09.
Article in English | MEDLINE | ID: mdl-37699052

ABSTRACT

Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.


Subject(s)
Algorithms , Sensory Receptor Cells
2.
J Imaging ; 7(3)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-34460697

ABSTRACT

We consider Wilson-Cowan-type models for the mathematical description of orientation-dependent Poggendorff-like illusions. Our modelling improves two previously proposed cortical-inspired approaches, embedding the sub-Riemannian heat kernel into the neuronal interaction term, in agreement with the intrinsically anisotropic functional architecture of V1 based on both local and lateral connections. For the numerical realisation of both models, we consider standard gradient descent algorithms combined with Fourier-based approaches for the efficient computation of the sub-Laplacian evolution. Our numerical results show that the use of the sub-Riemannian kernel allows us to reproduce numerically visual misperceptions and inpainting-type biases in a stronger way in comparison with the previous approaches.

3.
J Math Neurosci ; 11(1): 2, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33394219

ABSTRACT

The reconstruction mechanisms built by the human auditory system during sound reconstruction are still a matter of debate. The purpose of this study is to propose a mathematical model of sound reconstruction based on the functional architecture of the auditory cortex (A1). The model is inspired by the geometrical modelling of vision, which has undergone a great development in the last ten years. There are, however, fundamental dissimilarities, due to the different role played by time and the different group of symmetries. The algorithm transforms the degraded sound in an 'image' in the time-frequency domain via a short-time Fourier transform. Such an image is then lifted to the Heisenberg group and is reconstructed via a Wilson-Cowan integro-differential equation. Preliminary numerical experiments are provided, showing the good reconstruction properties of the algorithm on synthetic sounds concentrated around two frequencies.

4.
J Neurophysiol ; 123(5): 1606-1618, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32159409

ABSTRACT

We reproduce suprathreshold perception phenomena, specifically visual illusions, by Wilson-Cowan (WC)-type models of neuronal dynamics. Our findings show that the ability to replicate the illusions considered is related to how well the neural activity equations comply with the efficient representation principle. Our first contribution consists in showing that the WC equations can reproduce a number of brightness and orientation-dependent illusions. Then we formally prove that there cannot be an energy functional that the WC dynamics are minimizing. This leads us to consider an alternative, variational modeling, which has been previously employed for local histogram equalization (LHE) tasks. To adapt our model to the architecture of V1, we perform an extension that has an explicit dependence on local image orientation. Finally, we report several numerical experiments showing that LHE provides a better reproduction of visual illusions than the original WC formulation, and that its cortical extension is capable also to reproduce complex orientation-dependent illusions.NEW & NOTEWORTHY We show that the Wilson-Cowan equations can reproduce a number of brightness and orientation-dependent illusions. Then we formally prove that there cannot be an energy functional that the Wilson-Cowan equations are minimizing, making them suboptimal with respect to the efficient representation principle. We thus propose a slight modification that is consistent with such principle and show that this provides a better reproduction of visual illusions than the original Wilson-Cowan formulation. We also consider the cortical extension of both models to deal with more complex orientation-dependent illusions.


Subject(s)
Illusions/physiology , Models, Theoretical , Visual Cortex/physiology , Visual Perception/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...