Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 56(3): 75-84, 2007.
Article in English | MEDLINE | ID: mdl-17802841

ABSTRACT

Using subsurface vertical flow constructed wetlands (SSVFCWs) with intermittent loading it is possible to fulfil the stringent Austrian effluent standards regarding nitrification. For small plants (less than 500 persons) standards for ammonia nitrogen concentration have to be met at water temperatures higher than 12 degrees C, effluent concentrations and treatment efficiencies for organic matter have to be met the whole year around. According to the Austrian design standards the required surface area for SSVFCWs treating wastewater was 5 m2 per person. Within the first part of an Austrian research project the goal was to optimise, i.e. minimise the surface area requirement of vertical flow beds. Therefore, three SSVFCWs with a surface area of 20 m2 each have been operated in parallel. The organic loads applied were 20, 27 and 40 g COD/m2/d, which corresponds to a specific surface area requirement of 4, 3 and 2 m2 per PE, respectively. The paper compares the effluent concentrations and elimination efficiencies of the three parallel operated beds. It could be shown that a specific area demand of 4 m2 per person is suitable to be included in the revision of the Austrian design standard. Additionally it could be shown that during the warmer seasons (May-October) when the temperature of the effluent is higher than 12 degrees C the specific surface area might be further reduced; even 2 m2 per person has been proven to be adequate.


Subject(s)
Ammonia/analysis , Waste Disposal, Fluid/methods , Water Movements , Wetlands , Ammonia/standards , Austria , Environment Design , Temperature , Water Purification
2.
Water Sci Technol ; 55(7): 71-8, 2007.
Article in English | MEDLINE | ID: mdl-17506422

ABSTRACT

Constructed wetlands (CWs) use the same processes that occur in natural wetlands to improve water quality and are used worldwide to treat different qualities of water. This paper shows the results of an Austrian research project having the main goals to optimize vertical flow beds in terms of surface area requirement and nutrient removal, respectively. It could be shown that a subsurface vertical flow constructed wetland (SSVFCW) operated with an organic load of 20 g COD x m(-2) x d(-1) (corresponding to a specific surface area demand of 4 m2 per person) can fulfil the requirements of the Austrian standard regarding effluent concentrations and removal efficiencies. During the warmer months (May - October), when the temperature of the effluent is higher than 12 degrees C, the specific surface area might be further reduced. Even 2 m2 per person have been proven to be adequate. Enhanced nitrogen removal of 58% could be achieved with a two-stage system (first stage: grain size for main layer 1-4 mm, saturated drainage layer; and second stage: grain size for main layer 0.06-4 mm, free drainage) that was operated with an organic load of 80 g COD x m(-2) x d(-1) for the first stage (1 m2 per person), i.e. 40 g COD x m(-2) x d(-1) for the two-stage system (2 m2 per person). Although the two-stage system was operated with higher organic loads a higher effluent quality compared to a single-stage SSVFCW (grain size for main layer 0.06-4 mm, free drainage, organic load 20 g COD x m(-2) x d(-1)) could be reached.


Subject(s)
Water Movements , Water Purification/methods , Wetlands , Filtration , Nitrogen/isolation & purification , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...